980 resultados para Visual Targets


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a reactive Sense and Avoid approach using spherical image-based visual servoing. Avoidance of point targets in the lateral or vertical plane is achieved without requiring an estimate of range. Simulated results for static and dynamic targets are provided using a realistic model of a small fixed wing unmanned aircraft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Anecdotal evidence suggests that some sunglass users prefer yellow tints for outdoor activities, such as driving, and research has suggested that such tints improve the apparent contrast and brightness of real-world objects. The aim of this study was to establish whether yellow filters resulted in objective improvements in performance for visual tasks relevant to driving. Methods Response times of nine young (age [mean ± SD], 31.4 ± 6.7 years) and nine older (age, [mean ± SD], 74.6 ± 4.8) adults were measured using video presentations of traffic hazards (driving hazard perception task) and a simple low-contrast grating appeared at random peripheral locations on a computer screen. Response times were compared when participants wore a yellow filter (with and without a linear polarizer) versus a neutral density filter (with and without a linear polarizer). All lens combinations were matched to have similar luminance transmittances (˜27%). Results In the driving hazard perception task, the young but not the older participants responded significantly more rapidly to hazards when wearing a yellow filter than with a luminance-matched neutral density filter (mean difference, 450 milliseconds). In the low-contrast grating task, younger participants also responded more quickly for the yellow filter condition but only when combined with a polarizer. Although response times increased with increasing stimulus eccentricity for the low-contrast grating task, for the younger participants, this slowing of response times with increased eccentricity was reduced in the presence of a yellow filter, indicating that perception of more peripheral objects may be improved by this filter combination. Conclusions Yellow filters improve response times for younger adults for visual tasks relevant to driving.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Changes in pupil size and shape are relevant for peripheral imagery by affecting aberrations and how much light enters and/or exits the eye. The purpose of this study is to model the pattern of pupil shape across the complete horizontal visual field and to show how the pattern is influenced by refractive error. Methods: Right eyes of thirty participants were dilated with 1% cyclopentolate and images were captured using a modified COAS-HD aberrometer alignment camera along the horizontal visual field to ±90°. A two lens relay system enabled fixation at targets mounted on the wall 3m from the eye. Participants placed their heads on a rotatable chin rest and eye rotations were kept to less than 30°. Best-fit elliptical dimensions of pupils were determined. Ratios of minimum to maximum axis diameters were plotted against visual field angle. Results: Participants’ data were well fitted by cosine functions, with maxima at (–)1° to (–)9° in the temporal visual field and widths 9% to 15% greater than predicted by the cosine of the field angle . Mean functions were 0.99cos[( + 5.3)/1.121], R2 0.99 for the whole group and 0.99cos[( + 6.2)/1.126], R2 0.99 for the 13 emmetropes. The function peak became less temporal, and the width became smaller, with increase in myopia. Conclusion: Off-axis pupil shape changes are well described by a cosine function which is both decentered by a few degrees and flatter by about 12% than the cosine of the viewing angle, with minor influences of refraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Covertly tracking mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms requires both visual and acoustic stealth. Whilst the use of robots for stealthy surveillance is not new, the majority only consider navigation for visual covertness. However, most fielded robotic systems have a non-negligible acoustic footprint arising from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. This time-varying acoustic signature can jeopardise any visual covertness and needs to be addressed in any stealthy navigation strategy. In previous work, we addressed the initial concepts for acoustically masking a tracking robot’s movements as it travels between observation locations selected to minimise its detectability by a dynamic natural target and ensuring con- tinuous visual tracking of the target. This work extends the overall concept by examining the utility of real-time acoustic signature self-assessment and exploiting shadows as hiding locations for use in a combined visual and acoustic stealth framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose We designed a visual field test focused on the field utilized while driving to examine associations between field impairment and motor vehicle collision involvement in 2,000 drivers ≥70 years old. Methods The "driving visual field test" involved measuring light sensitivity for 20 targets in each eye, extending 15° superiorly, 30° inferiorly, 60° temporally and 30° nasally. The target locations were selected on the basis that they fell within the field region utilized when viewing through the windshield of a vehicle or viewing the dashboard while driving. Monocular fields were combined into a binocular field based on the more sensitive point from each eye. Severe impairment in the overall field or a region was defined as average sensitivity in the lowest quartile of sensitivity. At-fault collision involvement for five years prior to enrollment was obtained from state records. Poisson regression was used to calculate crude and adjusted rate ratios examining the association between field impairment and at-fault collision involvement. Results Drivers with severe binocular field impairment in the overall driving visual field had a 40% increased rate of at-fault collision involvement (RR 1.40, 95%CI 1.07-1.83). Impairment in the lower and left fields was associated with elevated collision rates (RR 1.40 95%CI 1.07-1.82 and RR 1.49, 95%CI 1.15-1.92, respectively), whereas impairment in the upper and right field regions was not. Conclusions Results suggest that older drivers with severe impairment in the lower or left region of the driving visual field are more likely to have a history of at-fault collision involvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To investigate how distance visual acuity in the presence of defocus and astigmatism is affected by age and whether aberration properties of young and older eyes can explain any differences. METHODS: Participants were 12 young adults (mean [±SD] age, 23 [±2] years) and 10 older adults (mean [±SD] age, 57 [±4] years). Cyclopleged right eyes were used with 4-mm effective pupil sizes. Thirteen blur conditions were used by adding five spherical lens conditions (-1.00 diopters [D], -0.50 D, plano/0.00 D, +0.50 D, and +1.00 D) and adding two cross-cylindrical lenses (+0.50 DS/-1.00 DC and +1.00 D/-2.00 DC, or 0.50 D and 1.00 D astigmatism) at four negative cylinder axes (45, 90, 135, and 180 degrees). Targets were single lines of high-contrast letters based on the Bailey-Lovie chart. Successively smaller lines were read until a participant could no longer read any of the letters correctly. Aberrations were measured with a COAS-HD Hartmann-Shack aberrometer. RESULTS: There were no significant differences between the two age groups. We estimated that 70 to 80 participants per group would be needed to show significant effects of the trend of greater visual acuity loss for the young group. Visual acuity loss for astigmatism was twice that for defocus of the same magnitude of blur strength (0.33 logMAR [logarithm of the minimum angle of resolution]/D compared with 0.18 logMAR/D), contrary to the geometric prediction of similar loss. CONCLUSIONS: Any age-related differences in visual acuity in the presence of defocus and astigmatism were swamped by interparticipant variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To evaluate the applicability of visual feedback posturography (VFP) for quantification of postural control, and to characterize the horizontal angular vestibulo-ocular reflex (AVOR) by use of a novel motorized head impulse test (MHIT). Methods: In VFP, subjects standing on a platform were instructed to move their center of gravity to symmetrically placed peripheral targets as fast and accurately as possible. The active postural control movements were measured in healthy subjects (n = 23), and in patients with vestibular schwannoma (VS) before surgery (n = 49), one month (n = 17), and three months (n = 36) after surgery. In MHIT we recorded head and eye position during motorized head impulses (mean velocity of 170º/s and acceleration of 1 550º/s²) in healthy subjects (n = 22), in patients with VS before surgery (n = 38) and about four months afterwards (n = 27). The gain, asymmetry and latency in MHIT were calculated. Results: The intraclass correlation coefficient for VFP parameters during repeated tests was significant (r = 0.78-0.96; p < 0.01), although two of four VFP parameters improved slightly during five test sessions in controls. At least one VFP parameter was abnormal pre- and postoperatively in almost half the patients, and these abnormal preoperative VFP results correlated significantly with abnormal postoperative results. The mean accuracy in postural control in patients was reduced pre- and postoperatively. A significant side difference with VFP was evident in 10% of patients. In the MHIT, the normal gain was close to unity, the asymmetry in gain was within 10%, and the latency was a mean ± standard deviation 3.4 ± 6.3 milliseconds. Ipsilateral gain or asymmetry in gain was preoperatively abnormal in 71% of patients, whereas it was abnormal in every patient after surgery. Preoperative gain (mean ± 95% confidence interval) was significantly lowered to 0.83 ± 0.08 on the ipsilateral side compared to 0.98 ± 0.06 on the contralateral side. The ipsilateral postoperative mean gain of 0.53 ± 0.05 was significantly different from preoperative gain. Conclusion: The VFP is a repeatable, quantitative method to assess active postural control within individual subjects. The mean postural control in patients with VS was disturbed before and after surgery, although not severely. Side difference in postural control in the VFP was rare. The horizontal AVOR results in healthy subjects and in patients with VS, measured with MHIT, were in agreement with published data achieved using other techniques with head impulse stimuli. The MHIT is a non-invasive method which allows reliable clinical assessment of the horizontal AVOR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bhutani N, Ray S, Murthy A. Is saccade averaging determined by visual processing or movement planning? J Neurophysiol 108: 3161-3171, 2012. First published September 26, 2012; doi:10.1152/jn.00344.2012.-Saccadic averaging that causes subjects' gaze to land between the location of two targets when faced with simultaneously or sequentially presented stimuli has been often used as a probe to investigate the nature of computations that transform sensory representations into an oculomotor plan. Since saccadic movements involve at least two processing stages-a visual stage that selects a target and a movement stage that prepares the response-saccade averaging can either occur due to interference in visual processing or movement planning. By having human subjects perform two versions of a saccadic double-step task, in which the stimuli remained the same, but different instructions were provided (REDIRECT gaze to the later-appearing target vs. FOLLOW the sequence of targets in their order of appearance), we tested two alternative hypotheses. If saccade averaging were due to visual processing alone, the pattern of saccade averaging is expected to remain the same across task conditions. However, whereas subjects produced averaged saccades between two targets in the FOLLOW condition, they produced hypometric saccades in the direction of the initial target in the REDIRECT condition, suggesting that the interaction between competing movement plans produces saccade averaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single features such as line orientation and length are known to guide visual search, but relatively little is known about how multiple features combine in search. To address this question, we investigated how search for targets differing in multiple features ( intensity, length, orientation) from the distracters is related to searches for targets differing in each of the individual features. We tested race models (based on reaction times) and coactivation models ( based on reciprocal of reaction times) for their ability to predict multiple feature searches. Multiple feature searches were best accounted for by a co-activation model in which feature information combined linearly (r = 0.95). This result agrees with the classic finding that these features are separable i.e., subjective dissimilarity ratings sum linearly. We then replicated the classical finding that the length and width of a rectangle are integral features-in other words, they combine nonlinearly in visual search. However, to our surprise, upon including aspect ratio as an additional feature, length and width combined linearly and this model outperformed all other models. Thus, length and width of a rectangle became separable when considered together with aspect ratio. This finding predicts that searches involving shapes with identical aspect ratio should be more difficult than searches where shapes differ in aspect ratio. We confirmed this prediction on a variety of shapes. We conclude that features in visual search co-activate linearly and demonstrate for the first time that aspect ratio is a novel feature that guides visual search.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whether mice perceive the depth of space dependent on the visual size of object targets was explored when visual cues such as perspective and partial occlusion in space were excluded. A mouse was placed on a platform the height of which is adjustable. The platform located inside a box in which all other walls were dark exception its bottom through that light was projected as a sole visual cue. The visual object cue was composed of 4x4 grids to allow a mouse estimating the distance of the platform relative to the grids. Three sizes of grids reduced in a proportion of 2/3 and seven distances with an equal interval between the platform and the grids at the bottom were applied in the experiments. The duration of a mouse staying on the platform at each height was recorded when the different sizes of the grids were presented randomly to test whether the Judgment of the mouse for the depth of the platform from the bottom was affected by the size information of the visual target. The results from all conditions of three object sizes show that time of mice staying on the platform became longer with the increase in height. In distance of 20 similar to 30 cm, the mice did not use the size information of a target to judge the depth, while mainly used the information of binocular disparity. In distance less than 20 cm or more than 30 cm, however, especially in much higher distance 50 cm, 60 cm and 70 cm, the mice were able to use the size information to do so in order to compensate the lack of binocular disparity information from both eyes. Because the mice have only 1/3 of the visual field that is binocular. This behavioral paradigm established in the current study is a useful model and can be applied to the experiments using transgenic mouse as an animal model to investigate the relationships between behaviors and gene functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural network theory of :3-D vision, called FACADE Theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a Boundary Contour System (BCS) and a Feature Contour System (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that arc mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, DaVinci stereopsis, a 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analysed. The BCS and FCS sub-systems model aspects of how the two parvocellular cortical processing streams that join the Lateral Geniculate Nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-Depth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact. with cortical mechanisms of spatial attention, attentive objcect learning, and visual search. Adaptive Resonance Theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal cortex (IT) for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular Motion BCS signals interact with the model Where stream. Reciprocal interactions between these visual, What, and Where mechanisms arc used to discuss data about visual search and saccadic eye movements, including fast search of conjunctive targets, search of 3-D surfaces, selective search of like-colored targets, attentive tracking of multi-element groupings, and recursive search of simultaneously presented targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emotional and attentional functions are known to be distributed along ventral and dorsal networks in the brain, respectively. However, the interactions between these systems remain to be specified. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate how attentional focus can modulate the neural activity elicited by scenes that vary in emotional content. In a visual oddball task, aversive and neutral scenes were presented intermittently among circles and squares. The squares were frequent standard events, whereas the other novel stimulus categories occurred rarely. One experimental group [N=10] was instructed to count the circles, whereas another group [N=12] counted the emotional scenes. A main effect of emotion was found in the amygdala (AMG) and ventral frontotemporal cortices. In these regions, activation was significantly greater for emotional than neutral stimuli but was invariant to attentional focus. A main effect of attentional focus was found in dorsal frontoparietal cortices, whose activity signaled task-relevant target events irrespective of emotional content. The only brain region that was sensitive to both emotion and attentional focus was the anterior cingulate gyrus (ACG). When circles were task-relevant, the ACG responded equally to circle targets and distracting emotional scenes. The ACG response to emotional scenes increased when they were task-relevant, and the response to circles concomitantly decreased. These findings support and extend prominent network theories of emotion-attention interactions that highlight the integrative role played by the anterior cingulate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Failing to find a tumor in an x-ray scan or a gun in an airport baggage screening can have dire consequences, making it fundamentally important to elucidate the mechanisms that hinder performance in such visual searches. Recent laboratory work has indicated that low target prevalence can lead to disturbingly high miss rates in visual search. Here, however, we demonstrate that misses in low-prevalence searches can be readily abated. When targets are rarely present, observers adapt by responding more quickly, and miss rates are high. Critically, though, these misses are often due to response-execution errors, not perceptual or identification errors: Observers know a target was present, but just respond too quickly. When provided an opportunity to correct their last response, observers can catch their mistakes. Thus, low target prevalence may not be a generalizable cause of high miss rates in visual search.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spiking activity of nearby cortical neurons is correlated on both short and long time scales. Understanding this shared variability in firing patterns is critical for appreciating the representation of sensory stimuli in ensembles of neurons, the coincident influences of neurons on common targets, and the functional implications of microcircuitry. Our knowledge about neuronal correlations, however, derives largely from experiments that used different recording methods, analysis techniques, and cortical regions. Here we studied the structure of neuronal correlation in area V4 of alert macaques using recording and analysis procedures designed to match those used previously in primary visual cortex (V1), the major input to V4. We found that the spatial and temporal properties of correlations in V4 were remarkably similar to those of V1, with two notable differences: correlated variability in V4 was approximately one-third the magnitude of that in V1 and synchrony in V4 was less temporally precise than in V1. In both areas, spontaneous activity (measured during fixation while viewing a blank screen) was approximately twice as correlated as visual-evoked activity. The results provide a foundation for understanding how the structure of neuronal correlation differs among brain regions and stages in cortical processing and suggest that it is likely governed by features of neuronal circuits that are shared across the visual cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each of our movements activates our own sensory receptors, and therefore keeping track of self-movement is a necessary part of analysing sensory input. One way in which the brain keeps track of self-movement is by monitoring an internal copy, or corollary discharge, of motor commands. This concept could explain why we perceive a stable visual world despite our frequent quick, or saccadic, eye movements: corollary discharge about each saccade would permit the visual system to ignore saccade-induced visual changes. The critical missing link has been the connection between corollary discharge and visual processing. Here we show that such a link is formed by a corollary discharge from the thalamus that targets the frontal cortex. In the thalamus, neurons in the mediodorsal nucleus relay a corollary discharge of saccades from the midbrain superior colliculus to the cortical frontal eye field. In the frontal eye field, neurons use corollary discharge to shift their visual receptive fields spatially before saccades. We tested the hypothesis that these two components-a pathway for corollary discharge and neurons with shifting receptive fields-form a circuit in which the corollary discharge drives the shift. First we showed that the known spatial and temporal properties of the corollary discharge predict the dynamic changes in spatial visual processing of cortical neurons when saccades are made. Then we moved from this correlation to causation by isolating single cortical neurons and showing that their spatial visual processing is impaired when corollary discharge from the thalamus is interrupted. Thus the visual processing of frontal neurons is spatiotemporally matched with, and functionally dependent on, corollary discharge input from the thalamus. These experiments establish the first link between corollary discharge and visual processing, delineate a brain circuit that is well suited for mediating visual stability, and provide a framework for studying corollary discharge in other sensory systems.