906 resultados para Vehicle Steering.
Resumo:
This paper develops a path-following steering control strategy for an articulated heavy goods vehicle. The controller steers the axles of the semi-trailer so that its rear end follows the path of the fifth wheel coupling: for all paths and all speeds. This substantially improves low-speed manoeuvrability, off-tracking, and tyre scrubbing (wear). It also increases high-speed stability, reduces 'rearward amplification', and reduces the propensity to roll over in high-speed transient manoeuvres. The design of a novel experimental heavy goods vehicle with three independent hydraulically actuated steering axles is presented. The path-following controller is tested on the experimental vehicle, at low and high speeds. The field test results are compared with vehicle simulations and found to agree well. The benefits of this steering control approach are quantified. In a low-speed 'roundabout' manoeuvre, low-speed off-tracking was reduced by 73 per cent, from 4.25 m for a conventional vehicle to 1.15 m for the experimental vehicle; swept-path width was reduced by 2 m (28 per cent); peak scrubbing tyre forces were reduced by 83 per cent; and entry tail-swing was eliminated. In an 80 km/h lane-change manoeuvre, peak path error for the experimental vehicle was 33 per cent less than for the conventional vehicle, and rearward amplification of the trailer was 35 per cent less. Increasing the bandwidth of the steering actuators improved the high-speed dynamic performance of the vehicle, but at the expense of increased oil flow.
Resumo:
Steering feel, or steering torque feedback, is widely regarded as an important aspect of the handling quality of a vehicle. Despite this, there is little theoretical understanding of its role. This paper describes an initial attempt to model the role of steering torque feedback arising from lateral tyre forces. The path-following control of a nonlinear vehicle model is implemented using a time-varying model predictive controller. A series of Kalman filters are used to represent the driver's ability to generate estimates of the system states from noisy sensory measurements, including the steering torque. It is found that under constant road friction conditions, the steering torque feedback reduces path-following errors provided the friction is sufficiently high to prevent frequent saturation of the tyres. When the driver model is extended to allow identification of, and adaptation to, a varying friction condition, it is found that the steering torque assists in the accurate identification of the friction condition. The simulation results give insight into the role of steering torque feedback arising from lateral tyre forces. The paper concludes with recommendations for further work. © 2011 Taylor & Francis.
Resumo:
A receding horizon steering controller is presented, capable of pushing an oversteering nonlinear vehicle model to its handling limit while travelling at constant forward speed. The controller is able to optimise the vehicle path, using a computationally efficient and robust technique, so that the vehicle progression along a track is maximised as a function of time. The resultant method forms part of the solution to the motor racing objective of minimising lap time. © 2011 AACC American Automatic Control Council.
Resumo:
Recent developments in modeling driver steering control with preview are reviewed. While some validation with experimental data has been presented, the rigorous application of formal system identification methods has not yet been attempted. This paper describes a steering controller based on linear model-predictive control. An indirect identification method that minimizes steering angle prediction error is developed. Special attention is given to filtering the prediction error so as to avoid identification bias that arises from the closed-loop operation of the driver-vehicle system. The identification procedure is applied to data collected from 14 test drivers performing double lane change maneuvers in an instrumented vehicle. It is found that the identification procedure successfully finds parameter values for the model that give small prediction errors. The procedure is also able to distinguish between the different steering strategies adopted by the test drivers. © 2006 IEEE.
Resumo:
This paper is concerned with the modelling of strategic interactions between the human driver and the vehicle active front steering (AFS) controller in a path-following task where the two controllers hold different target paths. The work is aimed at extending the use of mathematical models in representing driver steering behaviour in complicated driving situations. Two game theoretic approaches, namely linear quadratic game and non-cooperative model predictive control (non-cooperative MPC), are used for developing the driver-AFS interactive steering control model. For each approach, the open-loop Nash steering control solution is derived; the influences of the path-following weights, preview and control horizons, driver time delay and arm neuromuscular system (NMS) dynamics are investigated, and the CPU time consumed is recorded. It is found that the two approaches give identical time histories as well as control gains, while the non-cooperative MPC method uses much less CPU time. Specifically, it is observed that the introduction of weight on the integral of vehicle lateral displacement error helps to eliminate the steady-state path-following error; the increase in preview horizon and NMS natural frequency and the decline in time delay and NMS damping ratio improve the path-following accuracy. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a 'command steer' control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, 'active' steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range. © VC 2013 by ASME.
Resumo:
The paper is concerned with the identification of theoretical preview steering controllers using data obtained from five test subjects in a fixed-base driving simulator. An understanding of human steering control behaviour is relevant to the design of autonomous and semi-autonomous vehicle controls. The driving task involved steering a linear vehicle along a randomly curving path. The theoretical steering controllers identified from the data were based on optimal linear preview control. A direct-identification method was used, and the steering controllers were identified so that the predicted steering angle matched as closely as possible the measured steering angle of the test subjects. It was found that identification of the driver's time delay and noise is necessary to avoid bias in identification of the controller parameters. Most subjects' steering behaviour was predicted well by a theoretical controller based on the lateral/yaw dynamics of the vehicle. There was some evidence that an inexperienced driver's steering action was better represented by a controller based on a simpler model of the vehicle dynamics, perhaps reflecting incomplete learning by the driver. Copyright © 2014 Inderscience Enterprises Ltd.
Resumo:
Preformed structural reinforcements have shown good performance in crash tests, where the great advantage is their weight. These reinforcements are designed with the aim of increasing the rigidity of regions with large deformations, thus stabilising sections of the vehicle that work as load path during impact. The objective of this work is to show the application of structural reinforcements made of polymeric material PA66 in the field of vehicle safety, through finite element simulations. Simulations of frontal impact at 50 km/h and in ODB (offset deformable barrier) at 57 km/h configurations (standards such as ECE R-94 and ECE R-12) were performed in the software LS-DYNA R (R) and MADYMO (R). The simulations showed that the use of polymeric reinforcements leads to a 70% reduction in A-pillar intrusion, a 65% reduction in the displacement of the steering column and a 59% reduction in the deformation in the region of the occupant legs and feet. The level of occupant injuries was analysed by MADYMO (R) software, and a reduction of 23.5% in the chest compression and 80% in the tibia compression were verified. According to the standard, such conditions lead to an improvement in the occupant safety in a vehicle collision event.
Resumo:
Intelligent Transportation Systems (ITS) cover a broad range of methods and technologies that provide answers to many problems of transportation. Unmanned control of the steering wheel is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle to reproduce the steering of a human driver. To this end, information is recorded about the car's state while being driven by human drivers and used to obtain, via genetic algorithms, appropriate fuzzy controllers that can drive the car in the way that humans do. These controllers have satisfy two main objectives: to reproduce the human behavior, and to provide smooth actions to ensure comfortable driving. Finally, the results of automated driving on a test circuit are presented, showing both good route tracking (similar to the performance obtained by persons in the same task) and smooth driving.
Resumo:
There is clear evidence that investment in intelligent transportation system technologies brings major social and economic benefits. Technological advances in the area of automatic systems in particular are becoming vital for the reduction of road deaths. We here describe our approach to automation of one the riskiest autonomous manœuvres involving vehicles – overtaking. The approach is based on a stereo vision system responsible for detecting any preceding vehicle and triggering the autonomous overtaking manœuvre. To this end, a fuzzy-logic based controller was developed to emulate how humans overtake. Its input is information from the vision system and from a positioning-based system consisting of a differential global positioning system (DGPS) and an inertial measurement unit (IMU). Its output is the generation of action on the vehicle’s actuators, i.e., the steering wheel and throttle and brake pedals. The system has been incorporated into a commercial Citroën car and tested on the private driving circuit at the facilities of our research center, CAR, with different preceding vehicles – a motorbike, car, and truck – with encouraging results.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.