973 resultados para VASE-SHAPED MICROFOSSILS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT : Background : The aim of this study was to evaluate the midterm biocompatibility of a new x-shaped implant made of zirconium in an animal model of glaucoma surgery. Methods : Preoperatively, ultrasound biomicroscopy (UBM), intraocular pressure (IOP) and outflow facility (OF) data were acquired. Upon surgery, one eye was chosen randomly to receive an implant, while the other received none. Ten rabbits went through a 1-, 2-, 3-, 4- and 6-month follow-up. [OP was measured regularly, UBM performed at 1, 3 and 6 months after surgery. At the end of the follow-up, OF was again measured. Histology sections were analyzed. Results : For both groups IOP control was satisfactory, while OF initially increased at month 1 to resume preoperative values thereafter. Eyes with implants had larger filtration blebs which decreased faster than in eyes without the implant. Drainage vessel density, inflammatory cell number and fibrosis were higher in tissues near the implant. Conclusions : The zirconium implant initially promoted the positive effects of the surgery (IOP control, OF increase). Nevertheless, after several months, foreign body reactions and fibrosis had occurred on some implants that restrained the early benefit of such a procedure. Modifications of the zirconium implant geometry could enhance the overall success rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airway stenting is a common endoscopic procedure that is used to treat a variety of central airway lesions. Obstructions or fistulas involving the carina or nearby tracheobronchial structures require the use of specially designed stents, commonly referred to as Y-stents. Conventional methods of endobronchial Y-stent delivery are all characterized by a blind and apneic period during the procedure that carries the risk of stent misplacement or ventilation/oxygenation problems or both. Using combined suspension laryngoscopy, flexible bronchoscopy, and jet ventilation, we describe a technique that makes challenging bronchoscopic interventions--such as self-expandable Y-shaped airway stent delivery--easy, precise, and safe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Référence bibliographique : Weigert, 258

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Référence bibliographique : Weigert, 267

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite (Spinturnix bechsteini) and compared it to that of its social host, the Bechstein's bat (Myotis bechsteinii). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Hyperglycemia after stroke is associated with larger infarct volume and poorer functional outcome. In an animal stroke model, the association between serum glucose and infarct volume is described by a U-shaped curve with a nadir ≈7 mmol/L. However, a similar curve in human studies was never reported. The objective of the present study is to investigate the association between serum glucose levels and functional outcome in patients with acute ischemic stroke. METHODS: We analyzed 1446 consecutive patients with acute ischemic stroke. Serum glucose was measured on admission at the emergency department together with multiple other metabolic, clinical, and radiological parameters. National Institutes of Health Stroke Scale (NIHSS) score was recorded at 24 hours, and Rankin score was recorded at 3 and 12 months. The association between serum glucose and favorable outcome (Rankin score ≤2) was explored in univariate and multivariate analysis. The model was further analyzed in a robust regression model based on fractional polynomial (-2-2) functions. RESULTS: Serum glucose is independently correlated with functional outcome at 12 months (OR, 1.15; P=0.01). Other predictors of outcome include admission NIHSS score (OR, 1.18; P<0001), age (OR, 1.06; P<0.001), prestroke Rankin score (OR, 20.8; P=0.004), and leukoaraiosis (OR, 2.21; P=0.016). Using these factors in multiple logistic regression analysis, the area under the receiver-operator characteristic curve is 0.869. The association between serum glucose and Rankin score at 12 months is described by a J-shaped curve with a nadir of 5 mmol/L. Glucose values between 3.7 and 7.3 mmol/L are associated with favorable outcome. A similar curve was generated for the association of glucose and 24-hour NIHSS score, for which glucose values between 4.0 and 7.2 mmol/L are associated with a NIHSS score <7. Discussion-Both hypoglycemia and hyperglycemia are dangerous in acute ischemic stroke as shown by a J-shaped association between serum glucose and 24-hour and 12-month outcome. Initial serum glucose values between 3.7 and 7.3 mmol/L are associated with favorable outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the analytical modeling of morphogen profiles is based on simplistic scenarios, where the source is abstracted to be point-like and fixed in time, and where only the steady state solution of the morphogen gradient in one dimension is considered. Here we develop a general formalism allowing to model diffusive gradient formation from an arbitrary source. This mathematical framework, based on the Green's function method, applies to various diffusion problems. In this paper, we illustrate our theory with the explicit example of the Bicoid gradient establishment in Drosophila embryos. The gradient formation arises by protein translation from a mRNA distribution followed by morphogen diffusion with linear degradation. We investigate quantitatively the influence of spatial extension and time evolution of the source on the morphogen profile. For different biologically meaningful cases, we obtain explicit analytical expressions for both the steady state and time-dependent 1D problems. We show that extended sources, whether of finite size or normally distributed, give rise to more realistic gradients compared to a single point-source at the origin. Furthermore, the steady state solutions are fully compatible with a decreasing exponential behavior of the profile. We also consider the case of a dynamic source (e.g. bicoid mRNA diffusion) for which a protein profile similar to the ones obtained from static sources can be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What drove the transition from small-scale human societies centred on kinship and personal exchange, to large-scale societies comprising cooperation and division of labour among untold numbers of unrelated individuals? We propose that the unique human capacity to negotiate institutional rules that coordinate social actions was a key driver of this transition. By creating institutions, humans have been able to move from the default 'Hobbesian' rules of the 'game of life', determined by physical/environmental constraints, into self-created rules of social organization where cooperation can be individually advantageous even in large groups of unrelated individuals. Examples include rules of food sharing in hunter-gatherers, rules for the usage of irrigation systems in agriculturalists, property rights and systems for sharing reputation between mediaeval traders. Successful institutions create rules of interaction that are self-enforcing, providing direct benefits both to individuals that follow them, and to individuals that sanction rule breakers. Forming institutions requires shared intentionality, language and other cognitive abilities largely absent in other primates. We explain how cooperative breeding likely selected for these abilities early in the Homo lineage. This allowed anatomically modern humans to create institutions that transformed the self-reliance of our primate ancestors into the division of labour of large-scale human social organization.