871 resultados para User-based collaborative filtering
Resumo:
"Fifty-six teachers, from four European countries, were interviewed to ascertain their attitudes to and beliefs about the Collaborative Learning Environments (CLEs) which were designed under the Innovative Technologies for Collaborative Learning Project. Their responses were analysed using categories based on a model from cultural-historical activity theory [Engestrom, Y. (1987). Learning by expanding.- An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit; Engestrom, Y., Engestrom, R., & Suntio, A. (2002). Can a school community learn to master its own future? An activity-theoretical study of expansive learning among middle school teachers. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Oxford: Blackwell Publishers]. The teachers were positive about CLEs and their possible role in initiating pedagogical innovation and enhancing personal professional development. This positive perception held across cultures and national boundaries. Teachers were aware of the fact that demanding planning was needed for successful implementations of CLEs. However, the specific strategies through which the teachers can guide students' inquiries in CLEs and the assessment of new competencies that may characterize student performance in the CLEs were poorly represented in the teachers' reflections on CLEs. The attitudes and beliefs of the teachers from separate countries had many similarities, but there were also some clear differences, which are discussed in the article. (c) 2005 Elsevier Ltd. All rights reserved."
Resumo:
Beijing University of Technology (BJUT); Beijing Municipal Lab of Brain Informatics; Chinese Society of Radiology; National Natural Science Foundation of China (NSFC); State Administration of Foreign Experts Affairs
Resumo:
Ultrasonography has an inherent noise pattern, called speckle, which is known to hamper object recognition for both humans and computers. Speckle noise is produced by the mutual interference of a set of scattered wavefronts. Depending on the phase of the wavefronts, the interference may be constructive or destructive, which results in brighter or darker pixels, respectively. We propose a filter that minimizes noise fluctuation while simultaneously preserving local gray level information. It is based on steps to attenuate the destructive and constructive interference present in ultrasound images. This filter, called interference-based speckle filter followed by anisotropic diffusion (ISFAD), was developed to remove speckle texture from B-mode ultrasound images, while preserving the edges and the gray level of the region. The ISFAD performance was compared with 10 other filters. The evaluation was based on their application to images simulated by Field II (developed by Jensen et al.) and the proposed filter presented the greatest structural similarity, 0.95. Functional improvement of the segmentation task was also measured, comparing rates of true positive, false positive and accuracy. Using three different segmentation techniques, ISFAD also presented the best accuracy rate (greater than 90% for structures with well-defined borders). (E-mail: fernando.okara@gmail.com) (C) 2012 World Federation for Ultrasound in Medicine & Biology.
Resumo:
I sistemi di raccomandazione sono una tipologia di sistemi di filtraggio delle informazioni che cercano di prevedere la valutazione o la preferenza che l'utente potrebbe dare ad un elemento. Sono diventati molto comuni in questi ultimi anni e sono utilizzati da una vasta gamma di applicazioni, le più popolari riguardano film, musica, notizie, libri, articoli di ricerca e tag di social networking. Tuttavia, ci sono anche sistemi di raccomandazione per i ristoranti, servizi finanziari, assicurazioni sulla vita e persone (siti di appuntamenti online, seguaci di Twitter). Questi sistemi, tuttora oggetto di studi, sono già applicati in un'ampia gamma di settori, come ad esempio le piattaforme di scoperta dei contenuti, utilizzate on-line per aiutare gli utenti nella ricerca di trasmissioni televisive; oppure i sistemi di supporto alle decisioni che utilizzano sistemi di raccomandazione avanzati, basati sull'apprendimento delle conoscenze, per aiutare i fruitori del servizio nella soluzioni di problemi complessi. Inoltre, i sistemi di raccomandazione sono una valida alternativa agli algoritmi di ricerca in quanto aiutano gli utenti a scoprire elementi che potrebbero non aver trovato da soli. Infatti, sono spesso implementati utilizzando motori di ricerca che indicizzano dati non tradizionali.
Resumo:
This thesis describes research into business user involvement in the information systems application building process. The main interest of this research is in establishing and testing techniques to quantify the relationships between identified success factors and the outcome effectiveness of 'business user development' (BUD). The availability of a mechanism to measure the levels of the success factors, and quantifiably relate them to outcome effectiveness, is important in that it provides an organisation with the capability to predict and monitor effects on BUD outcome effectiveness. This is particularly important in an era where BUD levels have risen dramatically, user centred information systems development benefits are recognised as significant, and awareness of the risks of uncontrolled BUD activity is becoming more widespread. This research targets the measurement and prediction of BUD success factors and implementation effectiveness for particular business users. A questionnaire instrument and analysis technique has been tested and developed which constitutes a tool for predicting and monitoring BUD outcome effectiveness, and is based on the BUDES (Business User Development Effectiveness and Scope) research model - which is introduced and described in this thesis. The questionnaire instrument is designed for completion by 'business users' - the target community being more explicitly defined as 'people who primarily have a business role within an organisation'. The instrument, named BUD ESP (Business User Development Effectiveness and Scope Predictor), can readily be used with survey participants, and has been shown to give meaningful and representative results.
Resumo:
In this paper we propose an adaptive power and message rate control method for safety applications at road intersections. The design objectives are to firstly provide guaranteed QoS support to both high priority emergency safety applications and low priority routine safety applications and secondly maximize channel utilization. We use an offline simulation based approach to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network with certain safety QoS requirements. The identified configurations are then used online by roadside access points (AP) adaptively according to estimated number of vehicles. Simulation results show that this adaptive method could provide required QoS support to safety applications and it significantly outperforms a fixed control method. © 2013 International Information Institute.
Resumo:
The number of research papers available today is growing at a staggering rate, generating a huge amount of information that people cannot keep up with. According to a tendency indicated by the United States’ National Science Foundation, more than 10 million new papers will be published in the next 20 years. Because most of these papers will be available on the Web, this research focus on exploring issues on recommending research papers to users, in order to directly lead users to papers of their interest. Recommender systems are used to recommend items to users among a huge stream of available items, according to users’ interests. This research focuses on the two most prevalent techniques to date, namely Content-Based Filtering and Collaborative Filtering. The first explores the text of the paper itself, recommending items similar in content to the ones the user has rated in the past. The second explores the citation web existing among papers. As these two techniques have complementary advantages, we explored hybrid approaches to recommending research papers. We created standalone and hybrid versions of algorithms and evaluated them through both offline experiments on a database of 102,295 papers, and an online experiment with 110 users. Our results show that the two techniques can be successfully combined to recommend papers. The coverage is also increased at the level of 100% in the hybrid algorithms. In addition, we found that different algorithms are more suitable for recommending different kinds of papers. Finally, we verified that users’ research experience influences the way users perceive recommendations. In parallel, we found that there are no significant differences in recommending papers for users from different countries. However, our results showed that users’ interacting with a research paper Recommender Systems are much happier when the interface is presented in the user’s native language, regardless the language that the papers are written. Therefore, an interface should be tailored to the user’s mother language.
Resumo:
Recommender systems are one of the recent inventions to deal with ever growing information overload. Collaborative filtering seems to be the most popular technique in recommender systems. With sufficient background information of item ratings, its performance is promising enough. But research shows that it performs very poor in a cold start situation where previous rating data is sparse. As an alternative, trust can be used for neighbor formation to generate automated recommendation. User assigned explicit trust rating such as how much they trust each other is used for this purpose. However, reliable explicit trust data is not always available. In this paper we propose a new method of developing trust networks based on user’s interest similarity in the absence of explicit trust data. To identify the interest similarity, we have used user’s personalized tagging information. This trust network can be used to find the neighbors to make automated recommendations. Our experiment result shows that the proposed trust based method outperforms the traditional collaborative filtering approach which uses users rating data. Its performance improves even further when we utilize trust propagation techniques to broaden the range of neighborhood.
Resumo:
In recommender systems based on multidimensional data, additional metadata provides algorithms with more information for better understanding the interaction between users and items. However, most of the profiling approaches in neighbourhood-based recommendation approaches for multidimensional data merely split or project the dimensional data and lack the consideration of latent interaction between the dimensions of the data. In this paper, we propose a novel user/item profiling approach for Collaborative Filtering (CF) item recommendation on multidimensional data. We further present incremental profiling method for updating the profiles. For item recommendation, we seek to delve into different types of relations in data to understand the interaction between users and items more fully, and propose three multidimensional CF recommendation approaches for top-N item recommendations based on the proposed user/item profiles. The proposed multidimensional CF approaches are capable of incorporating not only localized relations of user-user and/or item-item neighbourhoods but also latent interaction between all dimensions of the data. Experimental results show significant improvements in terms of recommendation accuracy.
Resumo:
La comunitat científica que treballa en Intel·ligència Artificial (IA) ha dut a terme una gran quantitat de treball en com la IA pot ajudar a les persones a trobar el que volen dins d'Internet. La idea dels sistemes recomanadors ha estat extensament acceptada pels usuaris. La tasca principal d'un sistema recomanador és localitzar ítems, fonts d'informació i persones relacionades amb els interessos i preferències d'una persona o d'un grup de persones. Això comporta la construcció de models d'usuari i l'habilitat d'anticipar i predir les preferències de l'usuari. Aquesta tesi està focalitzada en l'estudi de tècniques d'IA que millorin el rendiment dels sistemes recomanadors. Inicialment, s'ha dut a terme un anàlisis detallat de l'actual estat de l'art en aquest camp. Aquest treball ha estat organitzat en forma de taxonomia on els sistemes recomanadors existents a Internet es classifiquen en 8 dimensions generals. Aquesta taxonomia ens aporta una base de coneixement indispensable pel disseny de la nostra proposta. El raonament basat en casos (CBR) és un paradigma per aprendre i raonar a partir de la experiència adequat per sistemes recomanadors degut als seus fonaments en el raonament humà. Aquesta tesi planteja una nova proposta de CBR aplicat al camp de la recomanació i un mecanisme d'oblit per perfils basats en casos que controla la rellevància i edat de les experiències passades. Els resultats experimentals demostren que aquesta proposta adapta millor els perfils als usuaris i soluciona el problema de la utilitat que pateixen el sistemes basats en CBR. Els sistemes recomanadors milloren espectacularment la qualitat dels resultats quan informació sobre els altres usuaris és utilitzada quan es recomana a un usuari concret. Aquesta tesi proposa l'agentificació dels sistemes recomanadors per tal de treure profit de propietats interessants dels agents com ara la proactivitat, la encapsulació o l'habilitat social. La col·laboració entre agents es realitza a partir del mètode de filtratge basat en la opinió i del mètode col·laboratiu de filtratge a partir de confiança. Els dos mètodes es basen en un model social de confiança que fa que els agents siguin menys vulnerables als altres quan col·laboren. Els resultats experimentals demostren que els agents recomanadors col·laboratius proposats milloren el rendiment del sistema mentre que preserven la privacitat de les dades personals de l'usuari. Finalment, aquesta tesi també proposa un procediment per avaluar sistemes recomanadors que permet la discussió científica dels resultats. Aquesta proposta simula el comportament dels usuaris al llarg del temps basat en perfils d'usuari reals. Esperem que aquesta metodologia d'avaluació contribueixi al progrés d'aquesta àrea de recerca.
Resumo:
Information Overload and Mismatch are two fundamental problems affecting the effectiveness of information filtering systems. Even though both term-based and patternbased approaches have been proposed to address the problems of overload and mismatch, neither of these approaches alone can provide a satisfactory solution to address these problems. This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern-based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experimental results based on the RCV1 corpus show that the proposed twostage filtering model significantly outperforms the both termbased and pattern-based information filtering models.