981 resultados para Undifferentiated mesenchymal cells


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traditional Periodic Acid Schiff has been extensively used, coupled with immunohistochemistry for epithelia or mesenchymal cells, to highlight renal tubular basement membrane (TBM). We recently tried to perform such technique in a 5/6 nephrectomy model of progressive renal fibrosis to demonstrate TBM disruption as an evidence for epithelial-mesenchymal transdifferentiation. Despite excellent basement membrane staining with traditional fuchsin-Periodic Acid Schiff, the interface between epithelial and mesenchymal cells was frequently blurred when revealed with 3`3 diaminobenzidine tetrachloride-peroxidase. Also, it was inadequate when revealed with alkaline phosphatase-fast red. We devised a triple staining method with Periodic Acid-Thionin Schiff to highlight basement membrane in blue, after double immunostaining for epithelium and mesenchymal cells. Blue basement membrane rendered a brisk contrast and highlighted boundaries between epithelial-mesenchymal interfaces. This method was easy to perform and useful to demonstrate the TBM, yield a clear demonstration of the very focal TBM disruption found in this model of progressive renal fibrosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gut mesodermal tissues originate from the splanchnopleural mesenchyme. However, the embryonic gastrointestinal coelomic epithelium gives rise to mesenchymal cells, whose significance and fate are little known. Our aim was to investigate the contribution of coelomic epithelium-derived cells to the intestinal development. We have used the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1(cre)) crossed with the Rosa26R-EYFP reporter mouse. In the gastrointestinal duct Wt1, the Wilms' tumor suppressor gene, is specific and dynamically expressed in the coelomic epithelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP) allowing for colocalization with differentiation markers through confocal microscopy and flow cytometry. Wt1(cre-YFP) cells were very abundant throughout the intestine during midgestation, declining in neonates. Wt1(cre-YFP) cells were also transiently observed within the mucosa, being apparently released into the intestinal lumen. YFP was detected in cells contributing to intestinal vascularization (endothelium, pericytes and smooth muscle), visceral musculature (circular, longitudinal and submucosal) as well as in Cajal and Cajal-like interstitial cells. Wt1(cre-YFP) mesenchymal cells expressed FGF9, a critical growth factor for intestinal development, as well as PDGFRα, mainly within developing villi. Thus, a cell population derived from the coelomic epithelium incorporates to the gut mesenchyme and contribute to a variety of intestinal tissues, probably playing also a signaling role. Our results support the origin of interstitial cells of Cajal and visceral circular muscle from a common progenitor expressing anoctamin-1 and SMCα-actin. Coelomic-derived cells contribute to the differentiation of at least a part of the interstitial cells of Cajal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Embryonic stem (ES) cells-derived cardiomyocytes represent an attractive source of cells in cell replacement therapies for heart disease. However, controlled cardiogenic differentiation of ES cells requires a complete understanding of the complex molecular mechanisms regulating the differentiation process. We have previously shown that differentiation of ES cells into cardiomyocytes is favored by inactivation of the Notch 1 receptor pathway. In the present study, we therefore compared two ES cell lines, one with normal Notchl expression and one carrying deleted Notchl receptor alleles (Notchl-deleted ES cells) in order to identify genes responsible for the increased propensity of Notchl-deleted ES cells to produce cardiomyocytes. Using RNA-sequencing, we found approximately 300 coding and noncoding transcripts, which are differently expressed in undifferentiated Notchl-deleted ES cells. Since accumulating evidences indicate that long noncoding RNAs (IncRNAs) play important roles in ES cell pluripotency and differentiation, we focused our analysis on modulated IncRNAs. In particular, two IncRNAs, named here lnc 1230 and lnc 1335, are highly induced in the absence of Notchl receptor expression. These represent therefore prime candidates that could favor cardiogenic commitment in undifferentiated ES cells. Indeed, we demonstrate that forced expression of these two IncRNAs in wild-type ES cells result in a significant increase of the number of cardiac progenitor cells and cardiomyocytes in the differentiated progeny of these ES cells. Furthermore, we also identify several microRNAs that are differentially modulated in absence of Notchl expression. Among these are miR-142-5p and miR- 381-3p. Interestingly, both lncl230 and lncl335 are targets of these two microRNAs. Altogether, these data suggest that Notchl-dependent noncoding gene networks, implicating microRNAs and IncRNAs, control embryonic stem cell commitment into the mesodermal and cardiac lineages already at the undifferentiated state. - Les cardiomyocytes issus cellules souches embryonnaires sont une source très prometteuse pour les thérapies cellulaire de remplacement dans le cadre des maladies cardiaques. Cependant, l'utilisation de telles cellules requiert une compréhension poussée des mécanismes moléculaire régulant la différenciation. Nous avons par le passé démontré que la différenciation des cellules souches embryonnaires en cardiomyocytes est favorisée par l'inactivation de la voie d'activation intracellulaire dépendante du récepteur Notch 1. Nous avons donc comparé deux lignées de cellules souches embryonnaires, une présentant une voie d'activation Notchl normale et une chez laquelle les allèles codant pour le récepteur Notchl avaient été invalidés, de façon à identifier les gènes impliqués dans la capacité augmentée des cellules déficientes à produire des cardiomyocytes. En utilisant du séquençage d'ARN à haut débit, nous avons trouvé environ 300 gènes différemment exprimés dans les cellules déficientes pour Notchl. Par ailleurs, des évidences de plus en plus nombreuses suggèrent qu'une nouvelle classe de molécules appelée « long noncoding RNAs » joue un rôle prépondérant dans la maintenance de l'état non différencié et de la capacité de différenciation des cellules souches embryonnaires. Nous avons trouvé que plusieurs « long noncoding RNAs » étaient modulés en l'absence de Notchl, et en particulier deux molécules que nous avons appelées lncl230 et lncl335. Ces derniers représentent des candidats potentiels devant permettre de favoriser la production de cardiomyocytes. Nous avons en effet démontré que la surexpression de ces deux candidats dans des cellules souches embryonnaires résultait en une surproduction de cardiomyocytes. De plus, nous avons également identifié plusieurs microRNAs dont l'expression était modulée dans les cellules souches embryonnaires déficientes dans la voie Notchl. De façon intéressante, parmi ces microRNAs, le miR-142-5p et le miR-381-3p sont capables de cibler lncl230 and lncl335. Dans l'ensemble, ces résultats indiquent donc que des réseaux d'interaction dépendant de la voie d'activation Notch 1 et impliquant des ARNs non codant existent dans les cellules souches embryonnaires pour réguler leur différenciation en différent types cellulaires spécifiques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bone morphogenetic protein-2 (BMP-2) has the ability to induce osteoblast differentiation of undifferentiated cells, resulting in the healing of skeletal defects when delivered with a suitable carrier. We have applied a versatile delivery platform comprising a novel composite of two biomaterials with proven track records – apatite and poly(lactic-co-glycolic acid) (PLGA) – to the delivery of BMP-2. Sustained release of this growth factor was tuned with variables that affect polymer degradation and/or apatite dissolution, such as polymer molecular weight, polymer composition, apatite loading, and apatite particle size. The effect of released BMP-2 on C3H10T1/2 murine pluripotent mesenchymal cells was assessed by tracking the expression of osteoblastic makers, alkaline phosphatase (ALP) and osteocalcin. Release media collected over 100 days induced elevated ALP activity in C3H10T1/2 cells. The expression of osteocalcin was also upregulated significantly. These results demonstrated the potential of apatite-PLGA composite particles for releasing protein in bioactive form over extended periods of time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Theca cells are essential for female reproduction being the source of androgens that are precursors for follicular oestrogen synthesis and also signal through androgen receptors (AR) in the ovary and elsewhere. Theca cells arise from mesenchymal cells around the secondary follicle stage. Their recruitment, proliferation and cytodifferentiation are influenced, directly or indirectly, by paracrine signals from granulosa cells and oocyte although uncertainty remains over which are the critically important signals at particular stages. In a reciprocal manner, theca cells secrete factors that influence granulosa cell proliferation and differentiation at different follicle stages. Differentiated theca interna cells acquire responsiveness to luteinizing hormone (LH) and other endocrine signals and express components of the steroidogenic machinery required for androgen biosynthesis. They also express insulin-like peptide 3 (INSL3) and its receptor (RXFP2), levels of which increase during bovine antral follicle development. INSL3 signaling may play a role in promoting androgen biosynthesis since knockdown of either INSL3 or its receptor (RXFP2) in bovine theca cells inhibits androgen biosynthesis while exogenous INSL3 can raise androgen secretion. Bone morphogenetic proteins (BMPs) of thecal or granulosal origin suppress thecal production of both INSL3 and androgen. Inhibin, produced in greatest amounts by granulosa cells of preovulatory follicles, reverses these BMP actions. Thus, BMP-induced inhibition of thecal androgen production may be mediated by reduced INSL3-RXFP2 signaling. Activins also inhibit androgen production in an inhibin-reversible manner and recent evidence in sheep indicates that theca cells synthesize and secrete activin, implying an autocrine role in suppressing androgen biosynthesis in smaller follicles, akin to that envisaged for BMPs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Muscarinic (mAChRs) and nicotinic acetylcholine receptors (nAChRs) are involved in various physiological processes, including neuronal development. We provide evidence for expression of functional nicotinic and muscarinic receptors during differentiation of P19 carcinoma embryonic cells, as an in vitro model of early neurogenesis. We have detected expression and activity alpha(2)-alpha(7), beta(2), beta(4) nAChR and M1-M5 mAChR subtypes during neuronal differentiation. Nicotinic alpha(3) and beta(2) mRNA transcription was induced by addition of retinoic acid to P19 cells. Gene expression Of alpha(2), alpha(4)-alpha(7), beta(4) nAChR subunits decreased during initial differentiation and increased again when P19 cells underwent final maturation. Receptor response in terms of nicotinic agonist-evoked Ca2+, flux was observed in embryonic and neuronal-differentiated cells. Muscarinic receptor response, merely present in undifferentiated P19 cells, increased during neuronal differentiation. The nAChR-induced elevation of intracellular calcium ([Ca2+](i)) response in undifferentiated cells was due to Ca2+ influx. In differentiated P19 neurons the nAChR-induced [Ca2+](i) response was reduced following pretreatment with ryanodine, while the mAChR-induced response was unaffected indicating the contribution of Ca2+ release from ryanodine-sensitive stores to nAChR- but not mAChR-mediated Ca2+ responses. The presence of functional nAChRs in embryonic cells suggests that these receptors are involved in triggering Ca2+ waves during initial neuronal differentiation. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bone morphogenetic protein-7 (BMP-7) is a secreted multifunctional growth factor of the TGF-beta superfamily, which is predominantly known for its osteoinductive properties and emerging potential for treatment of kidney diseases. The mature 34-38 kDa disulfide-linked homodimer protein plays a key role in the differentiation of mesenchymal cells into bone and cartilage. In this study, the full-length sequence of hBMP-7 was amplified and, then, cloned, expressed, and purified from the conditioned medium of 293T cells stably transfected with a lentiviral vector. The mature protein dimer form was properly secreted and recognized by anti-BMP-7 antibodies, and the protein was shown to be glycosilated by treatment with exoglycosidase, followed by western blotting. Moreover, the activity of the purified protein was demonstrated both in vitro, by alkaline phosphatase activity in C2C12 cells, and in vivo by induction of ectopic bone formation in Balb/c Nude mice after 21 days, respectively. This recombinant protein platform may be very useful for expression of different human cytokines and other proteins for medical applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superficial digital flexor tendonitis is an important cause of lameness in horses and its incidence ranges from 13% to 30%, depending on the horse's activity. This injury can occur in yearlings and compromise its carriers by reinjury or even impossibility to return to athletic life. In spite of the long period required for tendon repair, the scar tissue presents lack of elasticity and stiffness. As current treatment strategies produce only marginal results, there has been great interest in research of therapies that influence the quality or the speed of tendon repair. Stem cell therapy has shown promising results in degenerative diseases and cases of deficient healing processes. This study aims to evaluate the influence of autologous mesenchymal bone marrow stem cells in tendon healing, comparing treated and non-treated tendons. Superficial digital flexor tendonitis lesions were induced by collagenase infiltration in both forelimbs of 6 horses, followed by autologous implant in one of the forelimbs of each animal. The horses were evaluated using clinical, ultrasonographic, histopathologic, and immunohistochemical parameters. Tendon biopsies were performed at Day 48. Results found in the treatment group, such as high inflammatory cells infiltration, extracellular matrix synthesis, reduced amount of necrosis areas, small increase in cellular proliferation (KI-67/MIB-1), and low immunoreactivity to transforming growth factor P I, suggested the acceleration of tendon repair in this group. Further studies should be conducted in order to verify the influence of this treatment on later phases of tendon repair. Overall, after analysis of the results, we can conclude that cellular therapy with the mononuclear fraction of bone marrow has accelerated tendon repair at 48 days after treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOAR

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bone marrow is a source of stem cells for greater and easier access, which is widely studied as a provider of hematopoietic and mesenchymal cells for various purposes, mainly therapeutic by the advances in research involving cell therapy. The swine is an animal species commonly used in the pursuit of development of experimental models. Thus, this study aimed to standardize protocol for collection and separation of bone marrow in swines, since this species is widely used as experimental models for various diseases. Twelve animals were used, which underwent bone marrow puncture with access from the iliac crest and cell separation by density gradient followed by a viability test with an average of 98% of viable cells. Given our results, we can ensure the swine as an excellent model for obtaining and isolation of mononuclear cells from bone marrow, stimulating several studies addressing the field of cell therapy. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Findings We set out to analyse the gene expression profile of pre-osteoblastic C2C12 cells during osteodifferentiation induced by both rhBMP2 and rhBMP7 using DNA microarrays. Induced and repressed genes were intercepted, resulting in 1,318 induced genes and 704 repressed genes by both rhBMP2 and rhBMP7. We selected and validated, by RT-qPCR, 24 genes which were upregulated by rhBMP2 and rhBMP7; of these, 13 are related to transcription (Runx2, Dlx1, Dlx2, Dlx5, Id1, Id2, Id3, Fkhr1, Osx, Hoxc8, Glis1, Glis3 and Cfdp1), four are associated with cell signalling pathways (Lrp6, Dvl1, Ecsit and PKCδ) and seven are associated with the extracellular matrix (Ltbp2, Grn, Postn, Plod1, BMP1, Htra1 and IGFBP-rP10). The novel identified genes include: Hoxc8, Glis1, Glis3, Ecsit, PKCδ, LrP6, Dvl1, Grn, BMP1, Ltbp2, Plod1, Htra1 and IGFBP-rP10. Background BMPs (bone morphogenetic proteins) are members of the TGFβ (transforming growth factor-β) super-family of proteins, which regulate growth and differentiation of different cell types in various tissues, and play a critical role in the differentiation of mesenchymal cells into osteoblasts. In particular, rhBMP2 and rhBMP7 promote osteoinduction in vitro and in vivo, and both proteins are therapeutically applied in orthopaedics and dentistry. Conclusion Using DNA microarrays and RT-qPCR, we identified both previously known and novel genes which are upregulated by rhBMP2 and rhBMP7 during the onset of osteoblastic transdifferentiation of pre-myoblastic C2C12 cells. Subsequent studies of these genes in C2C12 and mesenchymal or pre-osteoblastic cells should reveal more details about their role during this type of cellular differentiation induced by BMP2 or BMP7. These studies are relevant to better understanding the molecular mechanisms underlying osteoblastic differentiation and bone repair.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lo scheletro è un tessuto dinamico, capace di adattarsi alle richieste funzionali grazie a fenomeni di rimodellamento ed alla peculiare proprietà rigenerativa. Tali processi avvengono attraverso l’azione coordinata di osteoclasti ed osteoblasti. Queste popolazioni cellulari cooperano allo scopo di mantenere l’ equilibrio indispensabile per garantire l’omeostasi dello scheletro. La perdita di tale equilibrio può portare ad una diminuzione della massa ossea e, ad una maggiore suscettibilità alle fratture, come avviene nel caso dell’osteoporosi. E’ noto che, nella fisiopatologia dell’osso, un ruolo cruciale è svolto da fattori endocrini e paracrini. Dati recenti suggeriscono che il rimodellamento osseo potrebbe essere influenzato dal sistema nervoso. L’ipotesi è supportata dalla presenza, nelle vicinanze dell’osso, di fibre nervose sensoriali responsabili del rilascio di alcuni neuro peptidi, tra i quali ricordiamo la sostanza P. Inoltre in modelli animali è stato dimostrato il diretto coinvolgimento del sistema nervoso nel mantenimento dell’omeostasi ossea, infatti ratti sottoposti a denervazione hanno mostrato una perdita dell’equilibrio esistente tra osteoblasti ed osteoclasti. Per tali ragioni negli ultimi anni si è andata intensificando la ricerca in questo campo cercando di comprendere il ruolo dei neuropeptidi nel processo di differenziamento dei precursori mesenchimali in senso osteogenico. Le cellule stromali mesenchimali adulte sono indifferenziate multipotenti che risiedono in maniera predominante nel midollo osseo, ma che possono anche essere isolate da tessuto adiposo, cordone ombelicale e polpa dentale. In questi distretti le MSC sono in uno stato non proliferativo fino a quando non sono richieste per processi locali di riparo e rigenerazione tessutale. MSC, opportunamente stimolate, possono differenziare in diversi tipi di tessuto connettivo quali, tessuto osseo, cartilagineo ed adiposo. L’attività di ricerca è stata finalizzata all’ottimizzazione di un protocollo di espansione ex vivo ed alla valutazione dell’influenza della sostanza P, neuropeptide presente a livello delle terminazioni sensoriali nelle vicinanze dell’osso, nel processo di commissionamento osteogenico.