939 resultados para Truncation Error
Resumo:
Recent findings from studies of two families have shown that mutations in the GABA(A)-receptor gamma2 subunit are associated with generalized epilepsies and febrile seizures. Here we describe a family that has generalized epilepsy with febrile seizures plus (GEFS(+)), including an individual with severe myoclonic epilepsy of infancy, in whom a third GABA(A)-receptor gamma2-subunit mutation was found. This mutation lies in the intracellular loop between the third and fourth transmembrane domains of the GABA(A)-receptor gamma2 subunit and introduces a premature stop codon at Q351 in the mature protein. GABA sensitivity in Xenopus laevis oocytes expressing the mutant gamma2(Q351X) subunit is completely abolished, and fluorescent-microscopy studies have shown that receptors containing GFP-labeled gamma2(Q351X) protein are retained in the lumen of the endoplasmic reticulum. This finding reinforces the involvement of GABA(A) receptors in epilepsy.
Resumo:
We show that quantum feedback control can be used as a quantum-error-correction process for errors induced by a weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n-1)-qubit logical state encoded in n physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. Universal quantum computation is also possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber , Phys. Rev. Lett. 86, 4402 (2001)].
Resumo:
This paper presents a method for estimating the posterior probability density of the cointegrating rank of a multivariate error correction model. A second contribution is the careful elicitation of the prior for the cointegrating vectors derived from a prior on the cointegrating space. This prior obtains naturally from treating the cointegrating space as the parameter of interest in inference and overcomes problems previously encountered in Bayesian cointegration analysis. Using this new prior and Laplace approximation, an estimator for the posterior probability of the rank is given. The approach performs well compared with information criteria in Monte Carlo experiments. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Analysis of a major multi-site epidemiologic study of heart disease has required estimation of the pairwise correlation of several measurements across sub-populations. Because the measurements from each sub-population were subject to sampling variability, the Pearson product moment estimator of these correlations produces biased estimates. This paper proposes a model that takes into account within and between sub-population variation, provides algorithms for obtaining maximum likelihood estimates of these correlations and discusses several approaches for obtaining interval estimates. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
Background: Biochemical analysis of fluid is the primary laboratory approach hi pleural effusion diagnosis. Standardization of the steps between collection and laboratorial analyses are fundamental to maintain the quality of the results. We evaluated the influence of temperature and storage time on sample stability. Methods: Pleural fluid from 30 patients was submitted to analyses of proteins, albumin, lactic dehydrogenase (LDH), cholesterol, triglycerides, and glucose. Aliquots were stored at 21 degrees, 4 degrees, and-20 degrees C, and concentrations were determined after 1, 2, 3, 4, 7, and 14 days. LDH isoenzymes were quantified in 7 random samples. Results: Due to the instability of isoenzymes 4 and 5, a decrease in LDH was observed in the first 24 h in samples maintained at -20 degrees C and after 2 days when maintained at 4 degrees C. Aside from glucose, all parameters were stable for up to at least day 4 when stored at room temperature or 4 degrees C. Conclusions: Temperature and storage time are potential preanalytical errors in pleural fluid analyses, mainly if we consider the instability of glucose and LDH. The ideal procedure is to execute all the tests immediately after collection. However, most of the tests can be done in refrigerated sample;, excepting LDH analysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Parenteral anticoagulation is a cornerstone in the management of venous and arterial thrombosis. Unfractionated heparin has a wide dose/response relationship, requiring frequent and troublesome laboratorial follow-up. Because of all these factors, low-molecular-weight heparin use has been increasing. Inadequate dosage has been pointed out as a potential problem because the use of subjectively estimated weight instead of real measured weight is common practice in the emergency department (ED). To evaluate the impact of inadequate weight estimation on enoxaparin dosage, we investigated the adequacy of anticoagulation of patients in a tertiary ED where subjective weight estimation is common practice. We obtained the estimated, informed, and measured weight of 28 patients in need of parenteral anticoagulation. Basal and steady-state (after the second subcutaneous shot of enoxaparin) anti-Xa activity was obtained as a measure of adequate anticoagulation. The patients were divided into 2 groups according the anticoagulation adequacy. From the 28 patients enrolled, 75% (group 1, n = 21) received at least 0.9 mg/kg per dose BID and 25% (group 2, n = 7) received less than 0.9 mg/kg per dose BID of enoxaparin. Only 4 (14.3%) of all patients had anti-Xa activity less than the inferior limit of the therapeutic range (<0.5 UI/mL), all of them from group 2. In conclusion, when weight estimation was used to determine the enoxaparin dosage, 25% of the patients were inadequately anticoagulated (anti-Xa activity <0.5 UI/mL) during the initial crucial phase of treatment. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Activated sludge models are used extensively in the study of wastewater treatment processes. While various commercial implementations of these models are available, there are many people who need to code models themselves using the simulation packages available to them, Quality assurance of such models is difficult. While benchmarking problems have been developed and are available, the comparison of simulation data with that of commercial models leads only to the detection, not the isolation of errors. To identify the errors in the code is time-consuming. In this paper, we address the problem by developing a systematic and largely automated approach to the isolation of coding errors. There are three steps: firstly, possible errors are classified according to their place in the model structure and a feature matrix is established for each class of errors. Secondly, an observer is designed to generate residuals, such that each class of errors imposes a subspace, spanned by its feature matrix, on the residuals. Finally. localising the residuals in a subspace isolates coding errors. The algorithm proved capable of rapidly and reliably isolating a variety of single and simultaneous errors in a case study using the ASM 1 activated sludge model. In this paper a newly coded model was verified against a known implementation. The method is also applicable to simultaneous verification of any two independent implementations, hence is useful in commercial model development.
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map.
Resumo:
A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.