61 resultados para Trophozoites
Resumo:
The effects of experimental infection with Giardia lamblia were studied in 30-day old conventional and germfree CFW mice (7 animals in each group) of both sexes. Cysts were observed in the feces of both groups 6 to 7 days after intragastric infection of each animal with about 2.5 x 10(5) G. lamblia trophozoites. Fecal cyst level was statistically higher in germfree mice (about 10(5) cysts/g feces) when compared with the conventional group (about 10(4) cysts/g feces). The peak of infection in the conventional group apparently occurred on the 10th day after infection as indicated by an increase of fecal weight and by histopathological examination. Intense infiltration of the lamina propria and high reactional hyperplasia of the lymphoid component were observed in the conventional group. There was no infiltration or hyperplasia in germfree infected mice and fecal weight was relatively constant throughout the experiment. These results suggest that, as is the case for other intestinal pathogenic protozoa, the intestinal microflora is indispensable for the expression of the pathogenicity but not for the multiplication of G. lamblia.
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
As cisteína-proteases estão entre os alvos mais promissores para o desenvolvimento de novos agentes terapêuticos, visto que participam de eventos fundamentais do ciclo de vida de muitos microorganismos, inclusive Giardia. Como a atividade das proteases pode ser controlada por inibidores específicos, essas substâncias têm sido avaliadas quanto ao potencial antiparasitário. Diante disso, o presente estudo teve por objetivo avaliar o efeito in vitro do inibidor de cisteína-proteases E-64 sobre o crescimento, a aderência e a viabilidade de trofozoítos de cepa de Giardia isolada em Botucatu. Nos ensaios de crescimento e aderência, o número de trofozoítos foi estimado microscopicamente em hemocitômetro, enquanto que a viabilidade celular foi avaliada pelo método do MTT. No presente estudo, embora o metronidazol tenha se apresentado bastante efetivo, o E-64 mostrou ser capaz de inibir o crescimento, a aderência e a viabilidade em taxas superiores a 50%, especialmente nos cultivos expostos à concentração de 100 µM. A despeito de preliminares, esses resultados demonstram que o inibidor E-64 pode interferir em processos primordiais para a sobrevivência do parasita, além do que, abrem novas perspectivas para investigações futuras a fim de se avaliar o real potencial giardicida dos inibidores de proteases.
Resumo:
The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen (1O2). While most ROS are already well studied in the malaria parasite, singlet oxygen has been neglected to date. In this study we visualized the generation of 1O2 by live cell fluorescence microscopy using 3-(p-aminophenyl) fluorescein as an indicator dye. While 1O2 is found restrictively in the parasite, its amount varies during erythrocytic schizogony. Since the photosensitizer cercosporin generates defined amounts of 1O2 we have established a new cytometric method that allows the stage specific quantification of 1O2. Therefore, the parasites were first classified into three main stages according to their respective pixel-area of 200600 pixels for rings, 7001,200 pixels for trophozoites and 1,4002,500 pixels for schizonts. Interestingly the highest mean concentration of endogenous 1O2 of 0.34 nM is found in the trophozoites stage, followed by 0.20 nM (ring stage) and 0.10 nM (schizont stage) suggesting that 1O2 derives predominantly from the digestion of hemoglobin. (c) 2012 International Society for Advancement of Cytometry
Resumo:
The regulation of variant gene expression in Plasmodium falciparum is still only partially understood. Regulation of var genes, the most studied gene family involved in antigenic variation, is orchestrated by a dynamic pattern of inherited chromatin states. Although recent evidence pointed to epigenetic regulation of transcribed and repressed rif loci, little is known about specific on/off associated histone modifications of individual rif genes. To investigate the chromatin marks for transcribed and repressed rif loci, we cultivated parasites and evaluated the transcriptional status of chosen rif targets by qRT-PCR and performed ChIP assays using H3K9ac and H3K9me3 antibodies. We then monitored changes in the epigenetic patterns in parasites after several reinvasions and also evaluated the "poised'' mark in trophozoites and schizonts of the same erythrocytic cycle by ChIP using H3K4me2 specific antibodies. Our results show that H3K9 is acetylated in transcribed rif loci and trimethylated or even unmodified in repressed rif loci. These transcriptional and epigenetic states are inherited after several reinvasions. The poised modification H3K4me2 showed a tendency to be more present in loci in trophozoites that upon progression to schizonts strongly transcribe the respective locus. However, this effect was not consistently observed for all monitored loci. While our data show important similarities to var transcription-associated chromatin modifications, the observed swiftly occurring modifications at rif loci and the absence of H3K9 modification point to a different dynamic of recruitment of chromatin modifying enzymes.
Resumo:
OBJECTIVES: The protozoan parasite Giardia lamblia causes the intestinal disease giardiasis, which may lead to acute and chronic diarrhoea in humans and various animal species. For treatment of this disease, several drugs such as the benzimidazole albendazole, the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are currently in use. Previously, a G. lamblia nitroreductase 1 (GlNR1) was identified as a nitazoxanide-binding protein. The aim of the present project was to elucidate the role of this enzyme in the mode of action of the nitro drugs nitazoxanide and metronidazole. METHODS: Recombinant GlNR1 was overexpressed in both G. lamblia and Escherichia coli (strain BL21). The susceptibility of the transfected bacterial and giardial cell lines to nitazoxanide and metronidazole was analysed. RESULTS: G. lamblia trophozoites overexpressing GlNR1 had a higher susceptibility to both nitro drugs. E. coli were fully resistant to nitazoxanide under both aerobic and semi-aerobic growth conditions. When grown semi-aerobically, bacteria overexpressing GlNR1 became susceptible to nitazoxanide. CONCLUSIONS: These findings suggest that GlNR1 activates nitro drugs via reduction yielding a cytotoxic product.
Resumo:
Free-living amoebae (FLA) belonging to Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, and Sappinia pedata are known to cause infections in humans and animals leading to severe brain pathologies. Worldwide, warm aquatic environments have been found to be suitable habitats for pathogenic FLA. The present study reports on screening for potentially pathogenic FLA in four hot spring resorts in Switzerland. Water samples were taken from water filtration units and from the pools, respectively. Amoebae isolated from samples taken during, or before, the filtration process were demonstrated to be morphologically and phylogenetically related to Stenoamoeba sp., Hartmannella vermiformis, Echinamoeba exundans, and Acanthamoeba healyi. With regard to the swimming pools, FLA were isolated only in one resort, and the isolate was identified as non-pathogenic and as related to E. exundans. Further investigations showed that the isolates morphologically and phylogenetically related to A. healyi displayed a pronounced thermotolerance, and exhibited a marked in vitro cytotoxicity upon 5-day exposure to murine L929 fibroblasts. Experimental intranasal infection of Rag2-immunodeficient mice with these isolates led to severe brain pathologies, and viable trophozoites were isolated from the nasal mucosa, brain tissue, and lungs post mortem. In summary, isolates related to A. healyi were suggestive of being potentially pathogenic to immunocompromised persons. However, the presence of these isolates was limited to the filtration units, and an effective threat for health can therefore be excluded.
Resumo:
Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellae Ray 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans. (C) 2014 Elsevier GmbH. All rights reserved.
Resumo:
The intestinal protozoan parasite Giardia lamblia causes diarrhoea in humans and animals. In the present study, we used the C57BL/6 inbred mouse model to assess the impact of a nematode (Trichinella spiralis) infection on the course of a G. lamblia (clone GS/M-83-H7) infection. Acute trichinellosis coincided with transient intestinal inflammation and generated an intestinal environment that strongly promoted growth of G. lamblia trophozoites although the local anti-Giardia immunoglobulin (Ig) A production was not affected. This increased G. lamblia infection intensity correlated with intestinal mast cell infiltration, mast cell degranulation, and total IgE production. Furthermore, a G. lamblia single-infection investigated in parallel also resulted in intestinal mast cell accumulation but severe infiltration was triggered in the absence of IgE. Recently, intestinal mast cells emerging during a G. lamblia infection were reported to be involved in those immunological mechanisms that control intestinal proliferation of the parasite in mice. This anti-giardial activity was assumed to be related to the capacity of mast cells to produce IL-6. However, this previous assumption was questioned by our present immunohistological findings indicating that murine intestinal mast cells, activated during a G. lamblia infection were IL-6-negative. In the present co-infection experiments, mast cells induced during acute trichinellosis were not able to control a concurrent G. lamblia infection. This observation makes it feasible that the T. spiralis infection created an immunological and physiological environment that superimposed the anti-giardial effect of mast cells and thus favoured intestinal growth of G. lamblia trophozoites in double-infected mice. Furthermore, our findings raise the possibility that intestinal inflammation e.g. as a consequence of a 'pre-existing' nematode infection is a factor which contributes to increased susceptibility of a host to a G. lamblia infection. The phenomenon of a 'pre-existing' nematode infection prior to a G. lamblia infection is a frequent constellation in endemic areas of giardiasis and may therefore have a direct impact on the epidemiological situation of the disease.
Resumo:
The thiazolides represent a novel class of anti-infective drugs, with the nitrothiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] (NTZ) as the parent compound. NTZ exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. In vivo, NTZ is rapidly deacetylated to tizoxanide (TIZ), which exhibits similar activities. We have here comparatively investigated the in vitro effects of NTZ, TIZ, a number of other modified thiazolides, and metronidazole (MTZ) on Giardia lamblia trophozoites grown under axenic culture conditions and in coculture with the human cancer colon cell line Caco2. The modifications of the thiazolides included, on one hand, the replacement of the nitro group on the thiazole ring with a bromide, and, on the other hand, the differential positioning of methyl groups on the benzene ring. Of seven compounds with a bromo instead of a nitro group, only one, RM4820, showed moderate inhibition of Giardia proliferation in axenic culture, but not in coculture with Caco2 cells, with a 50% inhibitory concentration (IC50) of 18.8 microM; in comparison, NTZ and tizoxanide had IC50s of 2.4 microM, and MTZ had an IC50 of 7.8 microM. Moreover, the methylation or carboxylation of the benzene ring at position 3 resulted in a significant decrease of activity, and methylation at position 5 completely abrogated the antiparasitic effect of the nitrothiazole compound. Trophozoites treated with NTZ showed distinct lesions on the ventral disk as soon as 2 to 3 h after treatment, whereas treatment with metronidazole resulted in severe damage to the dorsal surface membrane at later time points.
Resumo:
Giardia lamblia is a common intestinal-dwelling protozoan and causes diarrhoea in humans and animals worldwide. For several years, a small number of drugs such as the 5-nitroimidazole metronidazole (MET) or the thiazolide nitazoxanide (NTZ) have been used for chemotherapy against giardiasis. However, various pre-clinical and clinical investigations revealed that antigiardial chemotherapy may be complicated by emergence of giardial resistance to these drugs. The present study addressed the question if isoflavones with antigiardial activity, such as daidzein (DAI) or formononetin (FOR), may serve as alternative compounds for treatment of giardiasis. For this purpose, the potential of G. lamblia clone WB C6 to form resistance to FOR and related isoflavones was tested in vitro. In the line of these experiments, a clone (C3) resistant to isoflavones, but sensitive to MET and NTZ, was generated. Affinity chromatography on DAI-agarose using cell-free extracts of G. lamblia trophozoites resulted in the isolation of a polypeptide of approximately 40 kDa, which was identified by mass spectrometry as a nucleoside hydrolase (NH) homologue (EAA37551.1). In a nucleoside hydrolase assay, recombinant NH hydrolysed all nucleosides with a preference for purine nucleosides and was inhibited by isoflavones. Using quantitative RT-PCR, the expression of genes that are potentially involved in resistance formation was analysed, namely NH and genes encoding variant surface proteins (VSPs, TSA417). The transcript level of the potential target NH was found to be significantly reduced in C3. Moreover, drastic changes were observed in VSP gene expression. This may indicate that resistance formation in Giardia against isoflavones is linked to, and possibly mediated by, altered gene expression. Taken together, our results suggest FOR or related isoflavones as an alternative antigiardial agent to overcome potential problems of resistance to drugs like MET or NTZ. However, the capacity of Giardia to develop resistance to isoflavones can potentially interfere with this alternative treatment of the disease.
Resumo:
The nitrothiazole analogue nitazoxanide [NTZ; 2-acetolyloxy-N-(5-nitro-2-thiazolyl)benzamide] represents the parent compound of a class of drugs referred to as thiazolides and exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. NTZ and other thiazolides are active against a wide range of other intracellular and extracellular protozoan parasites in vitro and in vivo, but their mode of action and respective subcellular target(s) have only recently been investigated. In order to identify potential targets of NTZ and other thiazolides in Giardia lamblia trophozoites, we have developed an affinity chromatography system using the deacetylated derivative of NTZ, tizoxanide (TIZ), as a ligand. Affinity chromatography on TIZ-agarose using cell extracts of G. lamblia trophozoites resulted in the isolation of an approximately 35-kDa polypeptide, which was identified by mass spectrometry as a nitroreductase (NR) homologue (EAA43030.1). NR was overexpressed as a six-histidine-tagged recombinant protein in Escherichia coli, purified, and then characterized using an assay for oxygen-insensitive NRs with dinitrotoluene as a substrate. This demonstrated that the NR was functionally active, and the protein was designated GlNR1. In this assay system, NR activity was severely inhibited by NTZ and other thiazolides, demonstrating that the antigiardial activity of these drugs could be, at least partially, mediated through inhibition of GlNR1.
Resumo:
Malaria parasite digests hemoglobin and utilizes the globin part for its nutritional requirements. Heme released as a byproduct of hemoglobin degradation is detoxified by polymerization into a crystalline, insoluble pigment, known as hemozoin. We have identified a novel reaction of depolymerization of hemozoin to heme. This reaction is initiated by the interaction of blood schizonticidal antimalarial drugs with the malarial hemozoin. The reaction has been confirmed, with the purified hemozoin as well as the lysate of the malaria parasite. Pigment breakdown was studied by infrared spectroscopy, thin-layer chromatography and spectrophotometric analysis. It was complete within 2 h of drug exposure, which explains the selective sensitivity of late stages (trophozoites and schizonts) of malarial parasites loaded with the hemozoin pigment to the toxic action of these drugs. It is suggested that the failure of the parasite heme detoxification system due to this reaction results in the accumulation of toxic heme, which alone, or complexed with the antimalarial leads to the death of malaria parasite.