988 resultados para Transcriptase-pcr Assay
Resumo:
Agricultural practices, such as spreading liquid manure or the utilisation of land as animal pastures, can result in faecal contamination of water resources. Rhodococcus coprophilus is used in microbial source tracking to indicate animal faecal contamination in water. Methods previously described for detecting of R. coprophilus in water were neither sensitive nor specific. Therefore, the aim of this study was to design and validate a new quantitative polymerase chain reaction (qPCR) to improve the detection of R. coprophilus in water. The new PCR assay was based on the R. coprophilus 16S rRNA gene. The validation showed that the new approach was specific and sensitive for deoxyribunucleic acid from target host species. Compared with other PCR assays tested in this study, the detection limit of the new qPCR was between 1 and 3 log lower. The method, including a filtration step, was further validated and successfully used in a field investigation in Switzerland. Our work demonstrated that the new detection method is sensitive and robust to detect R. coprophilus in surface and spring water. Compared with PCR assays that are available in the literature or to the culture-dependent method, the new molecular approach improves the detection of R. coprophilus.
Resumo:
We present the application of a real-time quantitative PCR assay, previously developed to measure relative telomere length in humans and mice, to two bird species, the zebra finch Taeniopygia guttata and the Alpine swift Apus melba. This technique is based on the PCR amplification of telomeric (TTAGGG)(n) sequences using specific oligonucleotide primers. Relative telomere length is expressed as the ratio (T/S) of telomere repeat copy number (T) to control single gene copy number (S). This method is particularly useful for comparisons of individuals within species, or where the same individuals are followed longitudinally. We used glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a single control gene. In both species, we validated our PCR measurements of relative telomere length against absolute measurements of telomere length determined by the conventional method of quantifying telomere terminal restriction fragment (TRF) lengths using both the traditional Southern blot analysis (Alpine swifts) and in gel hybridization (zebra finches). As found in humans and mice, telomere lengths in the same sample measured by TRF and PCR were well correlated in both the Alpine swift and the zebra finch.. Hence, this PCR assay for measurement of bird telomeres, which is fast and requires only small amounts of genomic DNA, should open new avenues in the study of environmental factors influencing variation in telomere length, and how this variation translates into variation in cellular and whole organism senescence.
Resumo:
To assess the clinical relevance of a semi-quantitative measurement of human cytomegalovirus (HCMV) DNA in renal transplant recipients within the typical clinical context of a developing country where virtually 100% of both receptors and donors are seropositive for this virus, we have undertaken HCMV DNA quantification using a simple, semi-quantitative, limiting dilution polymerase chain reaction (PCR). We evaluated this assay prospectively in 52 renal transplant patients from whom a total of 495 serial blood samples were collected. The samples scored HCMV positive by qualitative PCR had the levels of HCMV DNA determined by end-point dilution-PCR. All patients were HCMV DNA positive during the monitoring period and a diagnosis of symptomatic infection was made for 4 of 52 patients. In symptomatic patients the geometric mean of the highest level of HCMV DNAemia was 152,000 copies per 106 leukocytes, while for the asymptomatic group this value was 12,050. Symptomatic patients showed high, protracted HCMV DNA levels, whereas asymptomatic patients demonstrated intermittent low or moderate levels. Using a cut-off value of 100,000 copies per 106 leukocytes, the limiting dilution assay had sensitivity of 100%, specificity of 92%, a positive predictive value of 43% and a negative predictive value of 100% for HCMV disease. In this patient group, there was universal HCMV infection but relatively infrequent symptomatic HCMV disease. The two patient groups were readily distinguished by monitoring with the limiting dilution assay, an extremely simple technology immediately applicable in any clinical laboratory with PCR capability.
Resumo:
Torque teno virus (TTV) is a circular, single-stranded DNA virus that chronically infects healthy individuals of all ages worldwide. TTV has an extreme genetic heterogeneity which is reflected in its current classification into five main phylogenetic groups (1-5). Using specific PCR assays, it has been shown that many individuals are co-infected with TTV isolates belonging to different phylogenetic groups. Here, a multiplex PCR assay was developed, using five recombinant plasmids. Each plasmid carried an insert of different size issued from a TTV isolate belonging to a different group. The assay was able to simultaneously amplify DNAs of TTV isolates belonging to all five phylogenetic groups. Multiplex PCR was then tested satisfactorily on DNAs extracted from 55 serum samples (47 health care workers and 8 AIDS patients). All individuals but nine were infected with at least one TTV isolate. Co-infection with multiple isolates was found in 29/47 (62%) health care workers and in 8/8 (100%) AIDS patients. A number of discrepancies were observed when results obtained with three thermostable DNA polymerases were compared. For example, four TTV phylogenetic groups were detected in a particular serum sample by using one of the three DNA polymerases, whereas the other two enzymes were able to detect only three TTV groups. However, none of the three enzymes used could be broadly considered to be more efficient than the others. Despite its limitations, the assay described here constitutes a suitable tool to visualize the degree of co-infection of a given population, avoiding time-consuming experiments.
Resumo:
Deux tiers des cancers du sein expriment des récepteurs hormonaux ostrogéniques (tumeur ER-positive) et la croissance de ces tumeurs est stimulée par l’estrogène. Des traitements adjuvant avec des anti-estrogènes, tel que le Tamoxifen et les Inhibiteurs de l’Aromatase peuvent améliorer la survie des patientes atteinte de cancer du sein. Toutefois la thérapie hormonale n’est pas efficace dans toutes les tumeurs mammaires ER-positives. Les tumeurs peuvent présenter avec une résistance intrinsèque ou acquise au Tamoxifen. Présentement, c’est impossible de prédire quelle patiente va bénéficier ou non du Tamoxifen. Des études préliminaires du laboratoire de Dr. Mader, ont identifié le niveau d’expression de 20 gènes, qui peuvent prédire la réponse thérapeutique au Tamoxifen (survie sans récidive). Ces marqueurs, identifié en utilisant une analyse bioinformatique de bases de données publiques de profils d’expression des gènes, sont capables de discriminer quelles patientes vont mieux répondre au Tamoxifen. Le but principal de cette étude est de développer un outil de PCR qui peut évaluer le niveau d’expression de ces 20 gènes prédictif et de tester cette signature de 20 gènes dans une étude rétrospective, en utilisant des tumeurs de cancer du sein en bloc de paraffine, de patients avec une histoire médicale connue. Cet outil aurait donc un impact direct dans la pratique clinique. Des traitements futiles pourraient être éviter et l’indentification de tumeurs ER+ avec peu de chance de répondre à un traitement anti-estrogène amélioré. En conséquence, de la recherche plus appropriée pour les tumeurs résistantes au Tamoxifen, pourront se faire.
Resumo:
Aim: To develop a TaqMan probe-based, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of Mycoplasma suis in the blood of pigs. Methods and Results: Primers and probes specific to Myc. suis 16S rRNA gene were designed. The qPCR assay`s specificity, detection limit, intra- and inter-assay variability were evaluated and its performance was compared with a Myc. suis conventional PCR assay (cPCR). Blood of two experimentally infected pigs, 40 Indiana pigs, 40 Brazilian sows and 28 peccaries were tested. The assay detected as few as ten copies of Myc. suis plasmids and was 100-fold more sensitive than the cPCR. No cross-reactivity with nontarget pig mycoplasmas was observed. An average of 1.62 x 10(11) and 2.75 x 10(8) target copies ml(-1) of blood were detected in the acutely and chronically infected pigs, respectively. Three (7.5%) pigs and 32 (80.0%) sows were positive while all peccaries were negative for Myc. suis. Conclusion: The developed qPCR assay is highly sensitive and specific for Myc. suis detection and quantification. Significance and Impact of the Study: TaqMan qPCR is an accurate and quick test for detection of Myc. suis infected pigs, which can be used on varied instrumentation platforms.
Resumo:
O objetivo deste estudo foi aperfeiçoar um ensaio de PCR que amplificasse um fragmento de 843 pares de bases do gene p28 da Ehrlichia canis e compará-lo com outros dois métodos de PCR utilizados para amplificar partes do gene 16S rRNA e dsb do gênero Ehrlichia. Amostras sanguíneas foram colhidas de cães com diagnóstico clínico de erliquiose. A amplificação do gene p28 pela PCR produziu um fragmento de 843pb e esse ensaio permitiu a detecção do DNA de um parasita dentre 1 bilhão de células. Todas as amostras positivas detectadas pela PCR baseada no gene p28 foram também positivas pela nested PCR para detecção do gene 16S rRNA e também pela PCR dsb. Dentre as amostras negativas para a PCR p28, 55,3% foram co-negativas, mas 27,6% foram positivas pela PCR baseada nos genes 16S rRNA e dsb. A PCR p28 parece ser um teste útil para detecção molecular de E. canis, entretanto otimizações na sensibilidade nesta PCR são necessárias, para que esta técnica se torne uma importante alternativa no diagnóstico da erliquiose canina.
A nested-PCR assay for detection of Xylella fastidiosa in citrus plants and sharpshooter leafhoppers
Resumo:
Aims: Detection of Xylella fastidiosa in citrus plants and insect vectors.Methods and Results: Chelex 100 resin matrix was successfully standardized allowing a fast DNA extraction of X. fastidiosa. An amplicon of 500 bp was observed in samples of citrus leaf and citrus xylem extract, with and without symptoms of citrus variegated chlorosis, using PCR with a specific primer set indicating the presence of X. fastidiosa. The addition of insoluble acid-washed polyvinylpyrrolidone (PVPP) prior to DNA extraction of insect samples using Chelex 100 resin together with nested-PCR permitted the detection of X. fastidiosa within sharpshooter heads with great sensitivity. It was possible to detect up to two bacteria per reaction. From 250 sharpshooter samples comprising four species (Dilobopterus costalimai, Oncometopia facialis, Bucephalogonia xanthopis and Acrogonia sp.), 87 individuals showed positive results for X. fastidiosa in a nested-PCR assay.Conclusions: the use of Chelex 100 resin allowed a fast and efficient DNA extraction to be used in the detection of X. fastidiosa in citrus plants and insect vectors by PCR and nested-PCR assays, respectively.Significance and Impact of the study: the employment of efficient and sensitive methods to detect X. fastidiosa in citrus plants and insect vectors will greatly assist epidemiological studies.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A fast, sensitive and cost-effective multiplex-PCR assay for Mycobacterium tuberculosis complex (MTC) and Mycobacterium avium (M. avium) identification for routine diagnosis was evaluated. A total of 158 isolates of mycobacteria from 448 clinical specimens from patients with symptoms of mycobacterial disease were analyzed. By conventional biochemical methods 151 isolates were identified as M. tuberculosis, five as M. avium and two as Mycobacterium chelonae (M. chelonae). Mycolic acid patterns confirmed these results. Multiplex-PCR detected only IS6110 in isolates identified as MTC, and IS1245 was found only in the M. avium isolates. The method applied to isolates from two patients, identified by conventional methods and mycolic acid analysis, one as M. avium and other as M. chelonae, resulted positive for IS6110, suggesting co-infection with M. tuberculosis. These patients were successfully submitted to tuberculosis treatment. The multiplex-PCR method may offer expeditious identification of MTC and M. avium, which may minimize risks for active transmission of these organisms and provide useful treatment information.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fast-track Diagnostics respiratory pathogens (FTDRP) multiplex real-time RT-PCR assay was compared with in-house singleplex real-time RT-PCR assays for detection of 16 common respiratory viruses. The FTDRP assay correctly identified 26 diverse respiratory virus strains, 35 of 41 (85%) external quality assessment samples spiked with cultured virus and 232 of 263 (88%) archived respiratory specimens that tested positive for respiratory viruses by in-house assays. Of 308 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 270 (87.7%) and 265 (86%) were positive by FTDRP and in-house assays for one or more viruses, respectively, with combined test results showing good concordance (K=0.812, 95% CI = 0.786-0.838). Individual FTDRP assays for adenovirus, respiratory syncytial virus and rhinovirus showed the lowest comparative sensitivities with in-house assays, with most discrepancies occurring with specimens containing low virus loads and failed to detect some rhinovirus strains, even when abundant. The FTDRP enterovirus and human bocavirus assays appeared to be more sensitive than the in-house assays with some specimens. With the exceptions noted above, most FTDRP assays performed comparably with in-house assays for most viruses while offering enhanced throughput and easy integration by laboratories using conventional real-time PCR instrumentation. Published by Elsevier B.V.
Resumo:
Cryptosporidium parvum infection is very important with respect to public health, owing to foodborne and waterborne outbreaks and gastrointestinal illness in immunocompetent and immunocompromised persons. In cattle, infection with this species manifests either as a subclinical disease or with diarrheal illness, which occurs more often in the presence of other infectious agents than when alone. The aim of this study was to develop a real-time polymerase chain reaction (PCR) assay for the detection of C. parvum in calf fecal samples and to compare the results of this assay with those of the method routinely used for the diagnosis of Cryptosporidium spp., nested PCR targeting the 18S rRNA gene. Two hundred and nine fecal samples from calves ranging in age from 1 day to 6 months were examined using real-time PCR specific for the actin gene of C. parvum and by a nested PCR targeting the 18S rRNA gene of Cryptosporidium spp. Using real-time PCR detection, 73.2% (153 out of 209) of the samples were positive for C. parvum, while 56.5% (118 out of 209) of the samples were positive for Cryptosporidium spp. when the nested PCR amplification method was used for the detection. The analytical sensitivity of the real-time PCR was approximately one C. parvum oocyst. There was no significant nonspecific DNA amplification of any of the following species and genotype: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium bovis, Cryptosporidium canis, Cryptosporidium galli, Cryptosporidium ryanae, Cryptosporidium serpentis, or avian genotype II. Thus, we conclude that real-time PCR targeting the actin gene is a sensitive and specific method for the detection of C. parvum in calf fecal samples.
Resumo:
Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples.