985 resultados para Traitement visuo-tactile
Resumo:
When one finger touches the other, the resulting tactile sensation is perceived as weaker than the same stimulus externally imposed. This attenuation of sensation could result from a predictive process that subtracts the expected sensory consequences of the action, or from a postdictive process that alters the perception of sensations that are judged after the event to be self-generated. In this study we observe attenuation even when the fingers unexpectedly fail to make contact, supporting a predictive process. This predictive attenuation of self-generated sensation may have evolved to enhance the perception of sensations with an external cause.
Resumo:
Navigated transcranial magnetic stimulation (TMS) combined with diffusion-weighted magnetic resonance imaging (DW-MRI) and tractography allows investigating functional anatomy of the human brain with high precision. Here we demonstrate that working memory (WM) processing of tactile temporal information is facilitated by delivering a single TMS pulse to the middle frontal gyrus (MFG) during memory maintenance. Facilitation was obtained only with a TMS pulse applied to a location of the MFG with anatomical connectivity to the primary somatosensory cortex (S1). TMS improved tactile WM also when distractive tactile stimuli interfered with memory maintenance. Moreover, TMS to the same MFG site attenuated somatosensory evoked responses (SEPs). The results suggest that the TMS-induced memory improvement is explained by increased top-down suppression of interfering sensory processing in S1 via the MFG-S1 link. These results demonstrate an anatomical and functional network that is involved in maintenance of tactile temporal WM. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Lee M.H., ?Tactile Sensing: new directions, new challenges?, Int J. Robotics Research 19: 7, 636-643. July 2000.
Resumo:
Lee M.H. and Nicholls H.R., Tactile Sensing for Mechatronics: A State of the Art Survey, Mechatronics, 9, Jan 1999, pp1-31.
Resumo:
SCOPUS: ar.j
Resumo:
L'article présente quelques éléments de la procédure mise en place pour traiter un corpus écrit comportant 617 textes (près de 500 000 mots) relatifs aux eurorégions. Complexe et hétérogène à plusieurs titres (technique, linguistique, éditorial, générique, énonciatif), le corpus pose la difficulté majeure de l’appréhension de données multilingues (français, italien, espagnol, anglais, allemand, néerlandais). Sa manipulation a nécessité une réflexion adaptée et une démarche de modélisation que nous qualifions d’« agile » en raison de son caractère souple et itératif. La plateforme d’analyse élaborée permet de disposer de résultats utiles à l’analyse qualitative ultérieure du discours eurorégional. Elle articule un logiciel d'analyse morphosyntaxique éprouvé (TreeTagger) à des programmes (Perl) et à une base de données (SQLite) développés pour optimiser les requêtes multilingues simultanées et l’exportation automatique des résultats. Les fonctionnalités liées à la localisation contextualisée de mots- pivots, au recueil de dénominations et à la détection de segments répétés nous servent ici de guides pour exprimer les besoins de la recherche, les problèmes rencontrés et les solutions proposées. L'analyse d'observables récurrents, à savoir les notions de décision et de responsabilité, illustre le propos.
Resumo:
We examine hypotheses for the neural basis of the profile of visual cognition in young children with Williams syndrome (WS). These are: (a) that it is a consequence of anomalies in sensory visual processing; (b) that it is a deficit of the dorsal relative to the ventral cortical stream; (c) that it reflects deficit of frontal function, in particular of fronto-parietal interaction; (d) that it is related to impaired function in the right hemisphere relative to the left. The tests reported here are particularly relevant to (b) and (c). They form part of a more extensive programme of investigating visual, visuospatial, and cognitive function in large group of children with WS children, aged 8 months to 15 years. To compare performance across tests, avoiding floor and ceiling effects, we have measured performance in children with WS in terms of the ‘age equivalence’ for typically developing children. In this paper the relation between dorsal and ventral function was tested by motion and form coherence thresholds respectively. We confirm the presence of a subgroup of children with WS who perform particularly poorly on the motion (dorsal) task. However, such performance is also characteristic of normally developingchildren up to 5 years: thus the WS performance may reflect an overall persisting immaturity of visuospatial processing which is particularly evident in the dorsal stream. Looking at the performance on the global coherence tasks of the entire WS group, we find that there is also a subgroup who have both high form and motion coherence thresholds, relative to the performance of children of the same chronological age and verbal age on the BPVS, suggesting a more general global processing deficit. Frontal function was tested by a counterpointing task, ability to retrieve a ball from a ‘detour box’, and the Stroop-like ‘day-night’ task, all of which require inhibition of a familiar response. When considered in relation to overall development as indexed by vocabulary, the day-night task shows little specific impairment, the detour box shows a significant delay relative to controls, and the counterpointing task shows a marked and persistent deficit in many children. We conclude that frontal control processes show most impairment in WS when they are associated with spatially directed responses, reflecting a deficit of fronto-parietal processing. However, children with WS may successfully reduce the effect of this impairment by verbally mediated strategies. On all these tasks we find a range of difficulties across individual children and a small subset of WS who show very good performance, equivalent to chronological age norms of typically developing children. Neurobiological models of visuo-spatial cognition in children with WS p.4 Overall, we conclude that children with WS have specific processing difficulties with tasks involving frontoparietal circuits within the spatial domain. However, some children with WS can achieve similar performance to typically developing children on some tasks involving the dorsal stream, although the strategies and processing may be different in the two groups.
Resumo:
Objectives: To investigate the role of the prefrontal cortex in attention-based modulation of cortical somatosensory processing.
Methods: Six prefrontal stroke patients were compared with eleven neurologically intact older adults during a vibrotactile discrimination task. All subjects attended to stimuli on one digit while ignoring distracter stimuli on a separate digit of the same hand. Subjects were required to report infrequent targets on the attended digit only. Throughout testing electroencephalography was used to measure event-related potentials for both task-relevant and irrelevant stimuli.
Results: Prefrontal patients demonstrated significant changes in cortical somatosensory processing based on attention compared to age-matched controls. This was evident both in early unimodal somatosensory processing (i.e. P100) and in later cortical processing stages (i.e. long-latency positivity). Moreover, there was a tendency towards a tonic loss of inhibition over early somatosensory cortical processing (i.e. P50).
Conclusions: The attention-based modulation noted for neurologically intact older adults was absent in prefrontal lesion patients.
Significance: The present study highlights the important role of prefrontal regions in sustaining inhibition over early sensory cortical processing stages and in modifying somatosensory transmission based on task-relevance. Notably these deficits extend beyond those previously shown to occur as a function of age.
Resumo:
Connections can be suggested between music’s occupation of physical space, its relative ‘presence’ (using Edward Hall’s notion of proxemics), and the various senses of movement which pervade it. Movement might be seen to operate with respect to music at a variety of levels of metaphorisation – as increasingly complex chains of analogy which point back to our early physical experience of the world. But of course music is, fundamentally, action. Humans put energy into systems - external or internal to themselves - which transduce that energy into the movement of air. At the acoustic level music is, emphatically and unmetaphorically, movement. Perhaps such simple physical perceptions form one route through which we might understand and explore shared senses of meaning and their capacity for ‘transduction’ between multiple individuals. Our (developmentally) early sensory models of the world, built from encounters with its physical resistances and affordances, might be a route to understanding our more clearly encultured and abstracted ('higher' level) understandings of music.