800 resultados para Torque Measurement
Resumo:
We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510 GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05
Resumo:
One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.
Resumo:
Measurement instruments are an integral part of clinical practice, health evaluation and research. These instruments are only useful and able to present scientifically robust results when they are developed properly and have appropriate psychometric properties. Despite the significant increase of rating scales, the literature suggests that many of them have not been adequately developed and validated. The scope of this study was to conduct a narrative review on the process of developing new measurement instruments and to present some tools which can be used in some stages of the development process. The steps described were: I-The establishment of a conceptual framework, and the definition of the objectives of the instrument and the population involved; II-Development of the items and of the response scales; III-Selection and organization of the items and structuring of the instrument; IV-Content validity, V-Pre-test. This study also included a brief discussion on the evaluation of the psychometric properties due to their importance for the instruments to be accepted and acknowledged in both scientific and clinical environments.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas, Faculdade de Educação Física
Resumo:
OBJECTIVE: The aim of the present study was to verify the torque precision of metallic brackets with MBT prescription using the canine brackets as the representative sample of six commercial brands. MATERIAL AND METHODS: Twenty maxillary and 20 mandibular canine brackets of one of the following commercial brands were selected: 3M Unitek, Abzil, American Orthodontics, TP Orthodontics, Morelli and Ortho Organizers. The torque angle, established by reference points and lines, was measured by an operator using an optical microscope coupled to a computer. The values were compared to those established by the MBT prescription. RESULTS: The results showed that for the maxillary canine brackets, only the Morelli torque (-3.33º) presented statistically significant difference from the proposed values (-7º). For the mandibular canines, American Orthodontics (-6.34º) and Ortho Organizers (-6.25º) presented statistically significant differences from the standards (-6º). Comparing the brands, Morelli presented statistically significant differences in comparison with all the other brands for maxillary canine brackets. For the mandibular canine brackets, there was no statistically significant difference between the brands. CONCLUSIONS: There are significant variations in torque values of some of the brackets assessed, which would clinically compromise the buccolingual positioning of the tooth at the end of orthodontic treatment.
Resumo:
This study investigated whether there is a direct correlation between the level of vertical misfit at the abutment/implant interface and torque losses (detorque) in abutment screws. A work model was obtained from a metal matrix with five 3.75 x 9 mm external hex implants with standard platform (4.1 mm). Four frameworks were waxed using UCLA type abutments and one-piece cast in commercially pure titanium. The misfit was analyzed with a comparator microscope after 20 Ncm torque. The highest value of misfit observed per abutment was used. The torque required to loose the screw was evaluated using a digital torque meter. The torque loss values, measured by the torque meter, were assumed as percentage of initial torque (100%) given to abutment screws. Pearson's correlation (α=0.05) between the misfit values (29.08 ± 8.78 µm) and the percentage of detorque (50.71 ± 11.37%) showed no statistically significant correlation (p=0.295). Within the limitations of this study, it may be concluded that great vertical misfits dot not necessarily implies in higher detorque values.
Resumo:
This study evaluated fracture torque by torsion, in relation to the length and diameter of orthodontic mini-implants, to demonstrate their viability for clinical and experimental use based on the torque recommended by the manufacturers. The fractures at the moment of insertion, whose incidence in the literature is around 4%, are principally due to excessive force and the inability of the implant to resist rotational forces. Thirty orthodontic mini-implants of three commercial brands available in Brazil (Neodent 1.6 x 9 mm, Dentoflex 1.6 x 9 mm and Kopp 1.6 x 9 mm) were attached to a device made specifically for this research, leaving the mini-implants with sufficient stability. The miniimplants were submitted to torsion torque, using a digital torque wrench, until their breaking point. The values obtained with the test were submitted to analysis of variance and the Tukey test. The mean values of mini-implant ruptures were 26 N.cm for group A (Dentoflex), 25.4 N. cm for group B (Kopp) and 32.8 N.cm for group C (Neodent). From the Tukey test we could observe that the relationships between the means of the Dentoflex and Neodent groups, and between the Kopp and Neodent groups, were significant. Between the Dentoflex and Kopp groups, significance was nonexistent. All the values found in our research for fracture torque were higher than the limits recommended by the manufacturers for clinical use in orthodontics. The highest values were found in the Neodent group.
Resumo:
The aim of this study was to verify whether screw abutment lubrication can generate higher preload values compared to non-lubricated screws, a titanium abutment was screwed onto an implant analog and scanned with the Procera System to generate 20 zirconia abutments. MKIII Brånemark implants were clamped to a precision torque device, and the abutments were distributed in dry and wet groups with 10 specimens each. In the wet groups, the inner threads of the implants were filled with artificial saliva. All abutments were fastened with a Torqtite screw under 32 Ncm. Ten detorque measurements were performed per group pushing the reverse button of the Torque controller soon after screw tightening with values registered. The mean detorque values were calculated and compared by a Student's t test (?=0.05). The wet condition presented significantly higher mean detorque than the dry condition (31.5 ± 1.2 versus 27.5 ± 1.5 Ncm, respectively; p=0.0000024). In conclusion, there was always a loss in the initial torque values when the removal torque was measured under both conditions. The wet condition presented higher mean torque than the dry condition. Better preload values were established in the wet group, suggesting that the abutment screw must be lubricated in saliva to avoid further loosening.
Resumo:
Two experiments evaluated an operant procedure for establishing stimulus control using auditory and electrical stimuli as a baseline for measuring the electrical current threshold of electrodes implanted in the cochlea. Twenty-one prelingually deaf children, users of cochlear implants, learned a Go/No Go auditory discrimination task (i.e., pressing a button in the presence of the stimulus but not in its absence). When the simple discrimination baseline became stable, the electrical current was manipulated in descending and ascending series according to an adapted staircase method. Thresholds were determined for three electrodes, one in each location in the cochlea (basal, medial, and apical). Stimulus control was maintained within a certain range of decreasing electrical current but was eventually disrupted. Increasing the current recovered stimulus control, thus allowing the determination of a range of electrical currents that could be defined as the threshold. The present study demonstrated the feasibility of the operant procedure combined with a psychophysical method for threshold assessment, thus contributing to the routine fitting and maintenance of cochlear implants within the limitations of a hospital setting.
Resumo:
The flavonoids present in sugarcane (Saccharum officinarum) extracts were analyzed by liquid chromatography - mass spectrometry (LC-MS), and a study of the fragmentation patterns of selected flavonoids was conducted using orthogonal acceleration time-of-flight electrospray ionization mass spectrometry (ESI-oa-ToF MS). Seven C- and O-glycosylflavones were identified in the extracts, namely, schaftoside, isoschaftoside, luteolin-8-C-(rhamnosylglucoside), vitexin, orientin, tricin-7-O-neohesperidoside and tricin-7-O-glucoside. Of these, five were identified in the absence of direct comparison with their respective standards. The described method also permitted the differentiation of the 6-C and 8-C isomeric flavones, schaftoside and isoschaftoside. The combination of fragmentation data and exact mass measurement showed to be complimentary to the HPLC-UV-MS techniques previously utilized for isomers discrimination in sugarcane studies.
Resumo:
The purposes of this study were to compare lower-limb kinematics between genders, and determine the relationships among eccentric hip abductor and lateral rotator torques and lower-limb kinematics. The movements of the pelvis, femur, and knee were calculated for 16 women and 16 men during the single-leg squat. Eccentric hip abductor and lateral rotator torques were measured using an isokinetic dynamometer. The results showed that women had greater contralateral pelvic depression, femur adduction, and knee abduction than men. The eccentric hip abductor and lateral rotator torques were correlated with coronal plane femur and knee movements in the overall sample. When the genders were analyzed separately, it was observed that women with greater eccentric hip abductor torque exhibited less femur adduction and femur medial rotation, and greater knee adduction excursion. No significant relationship was observed between the isokinetic and kinematic variables in the male group. The differences between the genders help to explain the greater rate of knee disorders observed in women. Moreover, the eccentric hip abduction action seemed to be more important in women to control the lower-limb movements.
Resumo:
Using differential x-ray absorption spectroscopy (DiffXAS) we have measured and quantified the intrinsic, atomic-scale magnetostriction of Fe(81)Ga(19). By exploiting the chemical selectivity of DiffXAS, the Fe and Ga local environments have been assessed individually. The enhanced magnetostriction induced by the addition of Ga to Fe was found to originate from the Ga environment, where lambda(gamma,2)(approximate to (3/2)lambda(100)) is 390 +/- 40 ppm. In this environment, < 001 > Ga-Ga pair defects were found to exist, which mediate the magnetostriction by inducing large strains in the surrounding Ga-Fe bonds. For the first time, intrinsic, chemically selective magnetostrictive strain has been measured and quantified at the atomic level, allowing true comparison with theory.
Resumo:
Background: High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. Methods: Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, M(max) and F-waves were elicited at different times before or after the vibratory stimulation. Results: The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. Conclusions: These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms.
Resumo:
Introduction. This protocol aims at measuring fruit ethylene production during ripening. It can be used to compare ethylene production between different banana varieties or to compare ethylene production between fruit produced in different pedo-climatic conditions. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. This part describes the required laboratory materials and the three steps necessary for calculating the amount of ethylene produced during banana postharvest ripening. Possible troubleshooting is considered.