267 resultados para Thylakoidmembranbiogenese, DnaK, Hsp70, Cyanobakterien
Resumo:
Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.
Resumo:
Aspergillus fumigatus is the primary etiologic agent of invasive aspergillosis (IA), a major cause of death among immunosuppressed patients. Echinocandins (e.g., caspofungin) are increasingly used as second-line therapy for IA, but their activity is only fungistatic. Heat shock protein 90 (Hsp90) was previously shown to trigger tolerance to caspofungin and the paradoxical effect (i.e., decreased efficacy of caspofungin at higher concentrations). Here, we demonstrate the key role of another molecular chaperone, Hsp70, in governing the stress response to caspofungin via Hsp90 and their cochaperone Hop/Sti1 (StiA in A. fumigatus). Mutation of the StiA-interacting domain of Hsp70 (C-terminal EELD motif) impaired thermal adaptation and caspofungin tolerance with loss of the caspofungin paradoxical effect. Impaired Hsp90 function and increased susceptibility to caspofungin were also observed following pharmacologic inhibition of the C-terminal domain of Hsp70 by pifithrin-μ or after stiA deletion, further supporting the links among Hsp70, StiA, and Hsp90 in governing caspofungin tolerance. StiA was not required for the physical interaction between Hsp70 and Hsp90 but had distinct roles in the regulation of their function in caspofungin and heat stress responses. In conclusion, this study deciphering the physical and functional interactions of the Hsp70-StiA-Hsp90 complex provided new insights into the mechanisms of tolerance to caspofungin in A. fumigatus and revealed a key C-terminal motif of Hsp70, which can be targeted by specific inhibitors, such as pifithrin-μ, to enhance the antifungal activity of caspofungin against A. fumigatus.
Resumo:
A relação entre as concentrações intracelulares de glutationa (GSH) e dissulfeto de glutationa (GSSG), dita o estado redox celular que, por sua vez, modula a atividade de muitos genes e proteínas sensíveis às alterações de potencial redox. As proteínas de choque térmico (HSP) são fundamentais na defesa contra o estresse oxidativo e em processos de reparo celular. Já a bomba GS-X codificada pelo gene MRP1 pode regular o estado redox celular exportando dissulfeto de glutationa (GSSG), prevenindo o estresse oxidativo. Nosso objetivo foi verificar a expressão de HSP70, da bomba MRP1 e sua atividade, bem como o metabolismo da glutationa (GSH) no miocárdio e gastrocnêmio de ratos submetidos ao exercício agudo e ao treinamento físico de natação. Ratos machos Wistar, separados em controle e exercício (n=6; treinamento de uma semana, com carga de 5% do peso corporal na cauda, temperatura da água ± 30°C). Após o exercício os ratos foram sacrificados e o músculo cardíaco e gastrocnêmio retirados. Para análise do estado redox, foram utilizadas técnicas bioquímicas de análise do conteúdo intracelular de GSH e GSSG; para análise da expressão de HSP70 e MRP1 foram utilizadas técnicas de SDS-PAGE e Western blotting. A atividade da bomba MRP1 foi medida por técnicas espectrofotométricas em membranas isoladas dos músculos em estudo. Os resultados foram expressos como média desvio padrão da média. Foi utilizado o teste de análise de variância complementado com o teste de comparações múltiplas de Student-Newmann-Keus, para p < 0,05. Na análise do estado redox celular ([GSSG]/[GSH]), o miocárdio não apresentou mudanças significativas, enquanto que o gastrocnêmio do grupo exercício demonstrou aumento nesta modalidade indicando estresse (controle: 0,424± 0,056 e exercício: 3,775 ± 0,466). Com relação à expressão de HSP70 (unidades arbitrárias), o miocárdio não apresentou diferença, enquanto o gastrocnêmio do grupo exercício obteve um aumento significativo (controle 0,602± 0,047 e exercício 0,807 ± 0,224). Na expressão da MRP1, o coração apresentou diferença significativa (controle: 0,360± 0,028 e exercício: 0,800 ± 0,094), enquanto o gastrocnêmio não. A atividade da bomba MRP1 foi 21,4% maior no coração, e essa atividade foi diminuída pelo treinamento em 27,76% em relação ao controle. Os dados obtidos indicam que o miocárdio parece estar mais protegido do que o gastrocnêmio contra o estresse oxidativo induzido pelo exercício por apresentar maior expressão e atividade da bomba MRP1, uma vez que esta previne o acúmulo de GSSG intracelular bombeando o mesmo para o exterior da célula.
Resumo:
Ecteinascidina 743 (ET-743) é uma nova droga isolada de um tunicado marinho, a Ecteinascidia turbinata, que está na fase III dos estudos clínicos por sua marcada atividade anticâncer. Apesar de seu mecanismo de ação não estar completamente elucidado, tem sido demonstrado que a ET-743 se liga ao DNA formando adutos covalentes com o N2 da guanina. Além disso, a ET-743 tem sido relatada como potente inibidora da transcrição. No presente estudo, utilizou-se como modelo para a investigação dos efeitos antiproliferativos deste composto a linhagem celular derivada de glioblastoma humano, U-251 MG. Uma vez que o foco principal de atenção nos estudos sobre o mecanismo de ação da ET-743 esteja concentrado em suas interações com o DNA, a autora buscou avaliar outros aspectos de sua atividade antiproliferativa, quais sejam, o seu efeito sobre a distribuição das células no ciclo celular, sobre a atividade de enzimas associadas ao processo de apoptose, bem como sobre o conteúdo celular da proteína Hsp70. Em incubações de 0,5 nM por 48 h, a ET-743 causou um significante acúmulo das células na fase G2M do ciclo celular, o mesmo ocorrendo com doses mais elevadas (1,0 e 1,5) e incubações mais prolongadas (72 h). A ET-743 induziu morte celular dose-dependente e este efeito foi significativamente prevenido pelo inibidor de caspases z-VAD-fmk. Contudo, não foi observado aumento significativo nos níveis de Hsp70 após tratamento com ET-743. Considerando que alta expressão de Hsp70 é um dos principais mecanismos de proteção das células em condições de estresse, incluindo-se o tratamento com drogas citotóxicas, a não elevação de seus níveis na presença da ET-374 pode estar, ao menos em parte, relacionada à citotoxicidade produzida por este agente na linhagem estudada.
Resumo:
A novel method to measure oxidative stress resulting from exhaustive exercise in rats is presented. In this new procedure we evaluated the erythrocyte antioxidant enzymes, catalase ( CAT) and glutathione reductase (GR), the plasma oxidative attack markers, reactive carbonyl derivatives (RCD) and thiobarbituric reactive substances (TBARS). Muscular tissue damage was evaluated by monitoring plasma creatine kinase (CK) and plasma taurine ( Tau) concentrations. Also, we monitored total sulphydryl groups (TSG) and uric acid (UA), and the level of the 70 kDa heat shock protein (HSP70) in leukocytes as a marker of oxidative stress. In the study we found a correspondence between erythrocyte CAT and GR activities and leukocyte HSP70 levels, principally 3 h after the acute exercise, and this suggested an integrated mechanism of antioxidant defense. The increase in levels of plasma Tau was coincident with the increasing plasma levels of CK and TBARS, principally after two hours of exercise. Thus tissue damage occurred before the expression of any anti-oxidant system markers and the monitoring of Tau, CK or TBARS may be important for the estimation of oxidative stress during exhaustive exercise. Furthermore, the integrated analyses could be of value in a clinical setting to quantify the extent of oxidative stress risk and reduce the need to perform muscle biopsies as a tool of clinical evaluation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Incubation temperature (IT) was changed to evaluate if 6-wk-old birds become more tolerant to heat stress. After 13 d of incubation, 470 eggs were submitted to low (36.8degreesC), normal (37.8degreesC) and high (38.8degreesC) temperatures. At day 7 post-hatching, 144 birds were allocated to three rearing temperatures (48 birds/treatment): control/thermoneutral (35-24degreesC), high (33-30degreesC) or low (27-18degreesC) according to the age of the birds. Hsp70 levels in tissues of birds (1 d and 42 d), stress response (42 d) and performance were evaluated. High IT decreased brain (P < 0.01) and liver (P < 0.01) Hsp70 levels, whereas low IT decreased brain (P < 0.01) but increased heart (P < 0.01) Hsp70 levels in 1-d-old chicks. Birds incubated at a low temperature had higher (P < 0.05) feed intake (1-42d). High rearing temperature decreased feed intake (P<0.01) and liveweight (P<0.01). Colonic temperature was lower in birds incubated at a low temperature (P < 0.05) and higher in birds reared in a high temperature (P < 0.05) before heat stress. Birds reared in low temperature had higher increase in colonic temperature after heat stress (P < 0.05). Tissue Hsp70 levels were differently affected by rearing temperature, which affected broiler performance more than IT. Lower IT seemed to increase the sensitivity of birds to heat stress at market age.
Resumo:
1. The relationship between repeated thermal treatments and hepatic synthesis of Hsp 70 was studied in broiler chickens.2. Sixty broilers were submitted to 5 different treatments (12 birds each) from day 1 to day 42. Four groups were kept in a thermoneutral environment and subjected to 0, 1, 2 and 3 heat stress episodes at 35 degrees C for 4 h per week (TN-0, TN-1, TN-2 and TN-3, respectively). The last group (HT-35) was reared at a room temperature of 35 degrees C.3. From 39 to 42 old, the birds experienced acute heat stress at 41 degrees C. Resistance to heat stress was evaluated by the time taken for rectal temperature to increase by 3 degrees C above the pre-treatment value. Livers were collected (before and after heat stress) and Hsp70 was determined using Western Blot analysis with monoclonal anti-Hsp70 antibody.4. Resistance to heat stress and concentration of Hsp70 were higher in those birds subjected to more heat stress episodes during the experimental period (TN-3) and HT-35. A positive correlation was observed between Hsp70 concentration and the time taken for a 3 degrees C increase in rectal temperature (r=0.42; P<0.01).5. Exposing birds to episodes of heat stress (35 degrees C) during rearing may improve their resistance to acute heat stress, but the previous thermal history did not seem to influence the hepatocyte Hsp70 content after exposure to more severe heat stress (41 degrees C).
Resumo:
Hsp70 content (ng Hsp70 mu g total protein(-1)) in the liver and brain of control and adrenalectomized male rats was investigated by Western Blotting after heat stress (40 degrees C) or endotoxin-induced fever (E. coli lipopolysaccharide injection). The increase in rectal temperature was higher after heat stress than after LPS injection, Heat stress affected Hsp70 content of the liver, but not of the brain; however adrenalectomy did not influence any parameter. These results suggest that, under these circumstances, there is no relationship between the hypothalamic-pituitary-adrenal axis and Hsp70 synthesis in liver and brain. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Stress response is a universal mechanism developed by all organisms to deal with adverse changes in the environment, which lead to the synthesis of heat shock proteins (Hsps). In this study, the effect of moderate (41degreesC) and severe (44degreesC) heat stress on Hsp70 transcript expression pattern was investigated during chicken embryogenesis. Acute exposure to severe heat stress for one hour resulted in a fifteen-fold increase in Hsp70 mRNA levels. The return of stressed embryos to normal incubation temperature resulted in Hsp70 mRNA levels five-fold higher than control after three hours and normal levels after six hours. Moderate heat stress did not induce enhancements on Hsp70 mRNA levels. The spatial expression of Hsp70 transcripts was detected in embryos under normal incubation conditions. Whole-mount in situ hybridization analysis showed that Hsp70 transcripts were constitutively present in somite and in distinct encephalic domains (predominantly in prosencephalon and mesencephalon areas) of the chicken embryo. These results showed that Hsp70 induction is dependent on incubation temperature conditions, suggesting that early chicken embryos may induce a quick emergence response to cope with severe heat stress by increasing Hsp70 mRNA levels.
Resumo:
This study was carried out with the objective of evaluating the effect of heat (38.8 degreesC) or cold (35.8 degreesC) stress on chicken embryo development and tissues Hsp70 levels, after the 13th day of incubation. Embryo weight (percent egg weight), organ weight (percent embryo weight) and Hsp70 levels (ng Hsp70 mug(-1) total protein) in different tissues (liver, breast muscle, heart, lungs, brain and kidney) were studied at the end of incubation. Cold stress induced a lower embryo weight and lower kidney and lungs weights, whereas heart and liver were lighter in heat-stressed embryos. An interaction between temperature and age was obtained only for Hsp70 levels in kidney and heart. Cold-stressed embryos showed higher Hsp70 levels in the brain, lungs and liver; a decrease in brain and breast muscle Hsp70 levels was seen from the 19th to 20th days in control embryos. Hsp70 levels increased with age in kidneys of control embryos and in heart of heat- and cold-stressed embryos. In conclusion, this study showed that chicken embryo organ weights are affected by incubation temperature, and that Hsp70 expression is tissue dependent (higher levels being seen in the brain) being cold-stress more effective in increasing Hsp70 levels in most studied tissues.
Resumo:
The expression of the MyoD, myogenin, myostatin and Hsp70 genes was estimated in chicken embryos submitted to mild cold (36 +/- 0.5degreesC) or heat (44 +/- 0.5degreesC) for 1 h. 2. Marked decreases in MyoD, myogenin and myostatin transcript levels were observed in embryos exposed to high temperature, contrasting to the higher expression of the Hsp70 mRNA detected in heat-stressed embryos. 3. The exposure of chicken embryos to low temperature significantly affected only the abundance of myogenin mRNA. 4. These findings suggest that myogenic proliferation and differentiation events are compromised by variations in environmental temperature during avian embryogenesis. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este trabalho foi desenvolvido com o objetivo de pesquisar o efeito da energia da dieta sobre a temperatura do cólon e concentração de proteína de choque térmico (Hsp70) de frangos à temperatura ambiente, bem como durante o estresse calórico agudo. Os frangos foram criados até 51 dias de idade e alimentados com dietas contendo nível de energia alto (13.186 kJ EM/kg) ou baixo (12.139 kJ EM/kg). No 21º e 51º dias de idade, a temperatura do cólon foi medida e amostras de fígado foram obtidas para quantificação da Hsp70 através da análise por Western Blotting.. Nessas mesmas idades, a resposta das aves ao estresse calórico agudo (37º C/5 h) foi avaliada (temperatura colón e Hsp70 no fígado). Os resultados mostraram que aos 21 dias de idade, à temperatura ambiente, a temperatura do cólon e a concentração de Hsp70 hepática não foram afetadas pela energia da dieta, mas, aos 51 dias de idade, os frangos alimentados com baixos teores de energia apresentaram menores concentrações de Hsp70 no fígado. As respostas ao estresse calórico agudo mostraram que as aves alimentadas com dietas de alta energia tiveram menor incremento na temperatura do cólon, bem como no conteúdo de Hsp70 hepático. Os resultados desse estudo sugerem que a síntese de Hsp70 no fígado pode ser afetada pela energia da dieta e que frangos alimentados com altos níveis de energia podem ter a termotolerância alterada em condições de estresse agudo pelo calor.
Resumo:
In the present study we have investigated the effects of heat acclimation on brain and hepatic Hsp70 protein levels and body temperature of broiler chickens in response to gradual heat stress. Two groups of broilers were raised up to 47 days of age under distinct temperature conditions: thermoneutral (TN, according to bird age) or hot environmental (HS, 31-33°C). At 46 days of age, the birds reared at high ambient temperature were transferred to thermoneutrality conditions. After 18 h, these birds and the birds reared at thermoneutral temperature were submitted to gradual heat stress in a climatic chamber so that environment temperature was increased from 28 to 40ºC at a rate of 2ºC/h. Colonic temperature was measured using a thermometer sensor probe at each two hours, and hepatic and brain tissues were collected immediately after slaughter in order to assess Hsp70 protein level by Western blotting analysis. The colonic temperatures of birds reared at high temperature increased steeply during the first 2 h of heat stress (1.06ºC/h) and more slowly thereafter (0.59ºC/h). Broilers reared at thermoneutral temperature showed a small increase in the first 4 h of heat stress (0.18ºC/h) and then colonic temperature increased sharply (0.72ºC/h). Nevertheless, both groups presented similar final colonic temperature by the end of the stress period. Hsp70 levels (ng Hsp70 µg total protein-1) did not change in the liver or brain of the birds reared at high temperature. on the other hand, both liver and brain Hsp70 levels increased significantly during heat stress in the animals reared at thermoneutrality, with a higher expression of this peptide in brain tissue.