945 resultados para Three-dimensional computed tomography
Resumo:
Utilising computed tomography scans to allow a virtual analysis of three-dimensional reconstructions of the femur, this project confirms that the traditional 1952 Trotter and Gleser stature estimation equations are inapplicable for a contemporary Queensland population. Therefore, this study introduces modern stature estimation equations for femoral length and fragmentary femoral remains using Bayesian statistics for application in forensic anthropological casework. In addition, it was found that caution needs to be applied when comparing estimated stature to reported stature on the missing persons database due to inaccuracy in Queensland drivers' licences.
Resumo:
After attending this presentation, attendees will gain awareness of the ontogeny of cranial maturation, specifically: (1) the fusion timings of primary ossification centers in the basicranium; and (2) the temporal pattern of closure of the anterior fontanelle, to develop new population-specific age standards for medicolegal death investigation of Australian subadults. This presentation will impact the forensic science community by demonstrating the potential of a contemporary forensic subadult Computed Tomography (CT) database of cranial scans and population data, to recalibrate existing standards for age estimation and quantify growth and development of Australian children. This research welcomes a study design applicable to all countries faced with paucity in skeletal repositories. Accurate assessment of age-at-death of skeletal remains represents a key element in forensic anthropology methodology. In Australian casework, age standards derived from American reference samples are applied in light of scarcity in documented Australian skeletal collections. Currently practitioners rely on antiquated standards, such as the Scheuer and Black1 compilation for age estimation, despite implications of secular trends and population variation. Skeletal maturation standards are population specific and should not be extrapolated from one population to another, while secular changes in skeletal dimensions and accelerated maturation underscore the importance of establishing modern standards to estimate age in modern subadults. Despite CT imaging becoming the gold standard for skeletal analysis in Australia, practitioners caution the application of forensic age standards derived from macroscopic inspection to a CT medium, suggesting a need for revised methodologies. Multi-slice CT scans of subadult crania and cervical vertebrae 1 and 2 were acquired from 350 Australian individuals (males: n=193, females: n=157) aged birth to 12 years. The CT database, projected at 920 individuals upon completion (January 2014), comprises thin-slice DICOM data (resolution: 0.5/0.3mm) of patients scanned since 2010 at major Brisbane Childrens Hospitals. DICOM datasets were subject to manual segmentation, followed by the construction of multi-planar and volume rendering cranial models, for subsequent scoring. The union of primary ossification centers of the occipital bone were scored as open, partially closed or completely closed; while the fontanelles, and vertebrae were scored in accordance with two stages. Transition analysis was applied to elucidate age at transition between union states for each center, and robust age parameters established using Bayesian statistics. In comparison to reported literature, closure of the fontanelles and contiguous sutures in Australian infants occur earlier than reported, with the anterior fontanelle transitioning from open to closed at 16.7±1.1 months. The metopic suture is closed prior to 10 weeks post-partum and completely obliterated by 6 months of age, independent of sex. Utilizing reverse engineering capabilities, an alternate method for infant age estimation based on quantification of fontanelle area and non-linear regression with variance component modeling will be presented. Closure models indicate that the greatest rate of change in anterior fontanelle area occurs prior to 5 months of age. This study complements the work of Scheuer and Black1, providing more specific age intervals for union and temporal maturity of each primary ossification center of the occipital bone. For example, dominant fusion of the sutura intra-occipitalis posterior occurs before 9 months of age, followed by persistence of a hyaline cartilage tongue posterior to the foramen magnum until 2.5 years; with obliteration at 2.9±0.1 years. Recalibrated age parameters for the atlas and axis are presented, with the anterior arch of the atlas appearing at 2.9 months in females and 6.3 months in males; while dentoneural, dentocentral and neurocentral junctions of the axis transitioned from non-union to union at 2.1±0.1 years in females and 3.7±0.1 years in males. These results are an exemplar of significant sexual dimorphism in maturation (p<0.05), with girls exhibiting union earlier than boys, justifying the need for segregated sex standards for age estimation. Studies such as this are imperative for providing updated standards for Australian forensic and pediatric practice and provide an insight into skeletal development of this population. During this presentation, the utility of novel regression models for age estimation of infants will be discussed, with emphasis on three-dimensional modeling capabilities of complex structures such as fontanelles, for the development of new age estimation methods.
Resumo:
In dentistry, basic imaging techniques such as intraoral and panoramic radiography are in most cases the only imaging techniques required for the detection of pathology. Conventional intraoral radiographs provide images with sufficient information for most dental radiographic needs. Panoramic radiography produces a single image of both jaws, giving an excellent overview of oral hard tissues. Regardless of the technique, plain radiography has only a limited capability in the evaluation of three-dimensional (3D) relationships. Technological advances in radiological imaging have moved from two-dimensional (2D) projection radiography towards digital, 3D and interactive imaging applications. This has been achieved first by the use of conventional computed tomography (CT) and more recently by cone beam CT (CBCT). CBCT is a radiographic imaging method that allows accurate 3D imaging of hard tissues. CBCT has been used for dental and maxillofacial imaging for more than ten years and its availability and use are increasing continuously. However, at present, only best practice guidelines are available for its use, and the need for evidence-based guidelines on the use of CBCT in dentistry is widely recognized. We evaluated (i) retrospectively the use of CBCT in a dental practice, (ii) the accuracy and reproducibility of pre-implant linear measurements in CBCT and multislice CT (MSCT) in a cadaver study, (iii) prospectively the clinical reliability of CBCT as a preoperative imaging method for complicated impacted lower third molars, and (iv) the tissue and effective radiation doses and image quality of dental CBCT scanners in comparison with MSCT scanners in a phantom study. Using CBCT, subjective identification of anatomy and pathology relevant in dental practice can be readily achieved, but dental restorations may cause disturbing artefacts. CBCT examination offered additional radiographic information when compared with intraoral and panoramic radiographs. In terms of the accuracy and reliability of linear measurements in the posterior mandible, CBCT is comparable to MSCT. CBCT is a reliable means of determining the location of the inferior alveolar canal and its relationship to the roots of the lower third molar. CBCT scanners provided adequate image quality for dental and maxillofacial imaging while delivering considerably smaller effective doses to the patient than MSCT. The observed variations in patient dose and image quality emphasize the importance of optimizing the imaging parameters in both CBCT and MSCT.
Resumo:
We have developed an efficient fully three-dimensional (3D) reconstruction algorithm for diffuse optical tomography (DOT). The 3D DOT, a severely ill-posed problem, is tackled through a pseudodynamic (PD) approach wherein an ordinary differential equation representing the evolution of the solution on pseudotime is integrated that bypasses an explicit inversion of the associated, ill-conditioned system matrix. One of the most computationally expensive parts of the iterative DOT algorithm, the reevaluation of the Jacobian in each of the iterations, is avoided by using the adjoint-Broyden update formula to provide low rank updates to the Jacobian. In addition, wherever feasible, we have also made the algorithm efficient by integrating along the quadratic path provided by the perturbation equation containing the Hessian. These algorithms are then proven by reconstruction, using simulated and experimental data and verifying the PD results with those from the popular Gauss-Newton scheme. The major findings of this work are as follows: (i) the PD reconstructions are comparatively artifact free, providing superior absorption coefficient maps in terms of quantitative accuracy and contrast recovery; (ii) the scaling of computation time with the dimension of the measurement set is much less steep with the Jacobian update formula in place than without it; and (iii) an increase in the data dimension, even though it renders the reconstruction problem less ill conditioned and thus provides relatively artifact-free reconstructions, does not necessarily provide better contrast property recovery. For the latter, one should also take care to uniformly distribute the measurement points, avoiding regions close to the source so that the relative strength of the derivatives for measurements away from the source does not become insignificant. (c) 2012 Optical Society of America
Resumo:
Strontium ions (Sr2+) are known to prevent osteoporosis and also encourage bone formation. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopaedic applications. The present study demonstrates a new concept of developing Sr-substituted Mg-3(PO4)(2) - based biodegradable scaffolds. In particular, this work reports the fabrication, mechanical properties with an emphasis on strength reliability as well as in vitro degradation of highly biodegradable strontium-incorporated magnesium phosphate cements. These implantable scaffolds were fabricated using three-dimensional powder printing, followed by high temperature sintering and/or chemical conversion, a technique adaptable to develop patient-specific implants. A moderate combination of strength properties of 36.7 MPa (compression), 242 MPa (bending) and 10.7 MPa (tension) were measured. A reasonably modest Weibull modulus of up to 8.8 was recorded after uniaxial compression or diametral tensile tests on 3D printed scaffolds. A comparison among scaffolds with varying compositions or among sintered or chemically hardened scaffolds reveals that the strength reliability is not compromised in Sr-substituted scaffolds compared to baseline Mg-3(PO4)(2). The micro-computed tomography analysis reveals the presence of highly interconnected porous architecture in three-dimension with lognormal pore size distribution having median in the range of 17.74-26.29 mu m for the investigated scaffolds. The results of extensive in vitro ion release study revealed passive degradation with a reduced Mg2+ release and slow but sustained release of Sr2+ from strontium-substituted magnesium phosphate scaffolds. Taken together, the present study unequivocally illustrates that the newly designed Sr-substituted magnesium phosphate scaffolds with good strength reliability could be used for biomedical applications requiring consistent Sr2+-release, while the scaffold degrades in physiological medium. Statement of significance The study investigates the additive manufacturing of scaffolds based on different strontium-substituted magnesium phosphate bone cements by means of three-dimensional powder printing technique (3DPP). Magnesium phosphates were chosen due to their higher biodegradability compared to calcium phosphates, which is due to both a higher solubility as well as the absence of phase changes (to low soluble hydroxyapatite) in vivo. Since strontium ions are known to promote bone formation by stimulating osteoblast growth, we aimed to establish such a highly degradable magnesium phosphate ceramic with an enhanced bioactivity for new bone ingrowth. After post-processing, mechanical strengths of up to 36.7 MPa (compression), 24.2 MPa (bending) and 10.7 MPa (tension) could be achieved. Simultaneously, the failure reliability of those bioceramic implant materials, measured by Weibull modulus calculations, were in the range of 4.3-8.8. Passive dissolution studies in vitro proved an ion release of Mg2+ and PO43- as well as Sr2+, which is fundamental for in vivo degradation and a bone growth promoting effect. In our opinion, this work broadens the range of bioceramic bone replacement materials suitable for additive manufacturing processing. The high biodegradability of MPC ceramics together with the anticipated promoting effect on osseointegration opens up the way for a patient-specific treatment with the prospect of a fast and complete healing of bone fractures. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed uneven temperature and composition maps of water and deuterated water vapours in the core-packed bed and in the vicinity of the wall owing to flow maldistribution. The dynamic lag between the near-wall water vapour and deuterated water vapour compositions were observed suggesting that the convective transfer which was significant near the wall at the start, owing to high porosity, was also effective at large conversions.
Resumo:
HYPOTHESIS: During total shoulder arthroplasty (TSA), humeral head subluxation may be difficult to manage. Furthermore, there is a risk for postoperative recurrence of subluxation, affecting the outcome of TSA. An accurate evaluation of the subluxation is necessary to evaluate this risk. Currently, subluxation is measured in 2 dimensions (2D), usually relative to the glenoid face. The goal of this study was to extend this measure to 3 dimensions (3D) to compare glenohumeral and scapulohumeral subluxation and to evaluate the association of subluxation with the glenoid version. MATERIALS AND METHODS: The study analyzed 112 computed tomography scans of osteoarthritic shoulders. We extended the usual 2D definition of glenohumeral subluxation, scapulohumeral subluxation, and glenoid version by measuring their orientation in 3D relative to the scapular plane and the scapular axis. We evaluated statistical associations between subluxation and version in 2D and 3D. RESULTS: Orientation of subluxation and version covered all sectors of the glenoid surface. Scapulohumeral subluxation and glenoid version were highly correlated in amplitude (R(2) = 0.71; P < .01) and in orientation (R(2) = 0.86; P < .01). Approximately every degree of glenoid version induced 1% of scapulohumeral subluxation in the same orientation of the version. Conversely, glenohumeral subluxation was not correlated to glenoid version in 2D or in 3D. CONCLUSIONS: Orientation of the humeral subluxation is rarely within the arbitrary computed tomography plane and should therefore be measured in 3D to detect out-of-plane subluxation. Scapulohumeral subluxation and glenoid version measured in 3D could bring valuable information for decision making during TSA.
Resumo:
The purpose of this study was to quantify cephalometric and three-dimensional alterations of the posterior airway space of patients who underwent maxillomandibular advancement surgery. 20 patients treated by maxillomandibular advancement were selected. The minimal postoperative period was 6 months. The treated patients underwent cone-beam computed tomography at 3 distinct time intervals, preoperative (T1), immediate postoperative period up to 15 days after surgery (T2), and late postoperative period at least 6 months after surgery. The results showed that the maxillomandibular advancement promoted an increase in the posterior airway space in each patient in all the analyses performed, with a statistically significant difference between T2 and T1, and between T3 and T1, p < 0.05. There was a statistical difference between T2 and T3 in the analysis of area and volume, which means that the airway space became narrower after 6 months compared with the immediate postoperative period. The maxillomandibular advancement procedure allowed great linear area and volume increase in posterior airway space in the immediate and late postoperative periods, but there was partial loss of the increased space after 6 months. The linear analysis of airway space has limited results when compared with analysis of area and volume.
Resumo:
Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4 weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4 weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4 weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Introduction: The aim of this study was to evaluate craniofacial asymmetry by using 2-dimensional (2D) poster-oanterior cephalometric images, 3-dimensional cone-beam computed tomography (CBCT), and physical measurements (gold standard). Methods: Ten dry human skulls were assessed, and radiopaque markers were placed on 17 skeletal landmarks. Twenty linear measurements were taken on each side to compare the right and left sides and to compare these measurements with the physical measurements made with a digital caliper. To acquire the 2D posteroanterior radiographs, an Extraoral Phosphor Storage Plate (Air Techniques, Chicago, Ill) was used as the image receptor with a Eureka x-ray-Duocon Machlett unit (Machlett Laboratores, Chicago, Ill). Three-dimensional imaging data were acquired from a CB MercuRay (Hitachi Medical, Tokyo, Japan). Results: on average, the right side was larger than the left for most of the 20 distances evaluated in the digital 2D and the CBCT images, and there was poor agreement between the digital 2D images and the physical measurements (kappa = 0.0609) and almost perfect agreement (kappa = 0.92) between the CBCT and physical measurements when individual measurements were considered. Conclusions: Human skulls, with no apparent asymmetry, had some differences between the right and left sides, with dominance for the right side but with no clinical significance. CBCT can better evaluate craniofacial morphology when compared with digital 2D images. (Am J Orthod Dentofacial Orthop 2011; 139: e523-e531)
Resumo:
Objective: To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Study Design: Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K2HPO4) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K2HPO 4 phantoms were measured, and the relationship between CT numbers and K2HPO4 concentration was examined. The measured CT numbers of the K2HPO4 phantoms were compared between anatomical sites. Results: At all six anatomical locations, there was a strong linear relationship between CT numbers and K2HPO4 concentration (R 2 > 0.93). However, the absolute CT numbers varied considerably with the anatomical location. Conclusion: The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. © 2013 Elsevier Inc.
Resumo:
This study focused on three-dimensional (3D) airway space changes and stability following simultaneous maxillomandibular counterclockwise rotation, mandibular advancement, and temporomandibular joint (TMJ) reconstruction with custom-made total joint prostheses (TMJ Concepts®). Cone beam computed tomography (CBCT) scans of 30 consecutive female patients with irreversibly compromised TMJs were obtained at the following intervals: T1, presurgery; T2, immediately after surgery; and T3, at least 6 months after surgery. The CBCT volumetric datasets were analysed with Dolphin Imaging ® software to evaluate surgical and postsurgical changes to oropharyngeal airway parameters. The average changes in airway surface area (SA), volume (VOL), and minimum axial area (MAA) were, 179.50 mm2, 6302.60 mm3, and 92.23 mm2, respectively, at the longest follow-up (T3 - T1) (P ≤ 0.001). Significant correlations between the amount of mandibular advancement and counterclockwise rotation of the occlusal plane and 3D airway changes were also found (P ≤ 0.01). The results of this investigation showed a significant immediate 3D airway space increase after maxillomandibular counterclockwise rotation and mandibular advancement with TMJ Concepts total joint prostheses, which remained stable over the follow-up period. © 2013 International Association of Oral and Maxillofacial Surgeons.