977 resultados para Thiobarbituric acid-reactive substances
Resumo:
Deminice, R, Sicchieri, T, Mialich, MS, Milani, F, Ovidio, PP, and Jordao, AA. Oxidative stress biomarker responses to an acute session of hypertrophy-resistance traditional interval training and circuit training. J Strength Cond Res 25(3): 798-804, 2011-We have studied circuit resistance schemes with high loads as a time-effective alternative to hypertrophy-traditional resistance training. However, the oxidative stress biomarker responses to high-load circuit training are unknown. The aim of the present study was to compare oxidative stress biomarker response with an acute session of hypertrophy-resistance circuit training and traditional interval training. A week after the 1 repetition maximum (1RM) test, 11 healthy and well-trained male participants completed hypertrophy-resistance acute sessions of traditional interval training (3 x 10 repetitions at 75% of the 1RM, with 90-second passive rest) and circuit training (3 x 10 repetitions at 75% of the 1RM, in alternating performance of 2 exercises with different muscle groups) in a randomized and cross-over design. Venous blood samples were collected before (pre) and 10 minutes after (post) the resistance training sessions for oxidative stress biomarker assays. As expected, the time used to complete the circuit training (20.2 +/- 1.6) was half of that needed to complete the traditional interval training (40.3 +/- 1.8). Significant increases (p < 0.05) in thiobarbituric acid reactive substances (40%), creatine kinase (CK) (67%), glutathione (14%), and uric acid (25%) were detected posttraditional interval training session in relation to pre. In relation to circuit training, a significant increase in CK (33%) activity postsession in relation to pre was observed. Statistical analysis did not reveal any other change in the oxidative stress biomarker after circuit training. In conclusion, circuit resistance-hypertrophy training scheme proposed in the current study promoted lower oxidative stress biomarkers and antioxidant modulations compared with resistance traditional interval training.
Resumo:
This study examined the effect of weight loss on energy intake, vitamin C, E, beta-carotene (diet/blood), reduced glutathione (GSH), C-reactive protein (CRP), thiobarbituric acid reactive substances (TBARS), catalase, and myeloperoxidase, in patients with Roux-en-Y bypass gastroplasty. Prospective clinical study with control (C) and bariatric (B) groups (n = 20 each). Age was 38.8 +/- 11.1 (C) and 37.8 +/- 11.2 years (B), and body mass indices (BMI) were 22.4 +/- 2.4 and 48.1 +/- 8.7 kg/m(2), respectively. Group C was assessed on a single occasion and B at three time points (basal period and 3 and 6 months after gastroplasty). BMI was decreased at three (38.3 +/- 1.7, P = 0.018) and 6 months after surgery (34.9 +/- 1.7, P < 0.001). Mean weight loss was 20.53 +/- 1.1 after three and 27.96 +/- 1.3 kg after 6 months. Serum vitamin C and beta-carotene (P < 0.01 and P < 0.001, respectively) were increased at 6 months compared to basal. Basal serum vitamin C (P = 0.001) and beta-carotene (P < 0.001) were lower compared to controls. Serum vitamin E corrected for cholesterol and triglycerides was higher in group B at three (P = 0.01) and 6 months (P = 0.001) and lower at basal (P < 0.001) compared to controls. GSH was higher in controls (P < 0.001) compared to basal. Catalase (P = 0.01) and TBARS (P < 0.001) were higher in group B at 6 months. TBARS were higher (P < 0.001) at basal compared to controls. Myeloperoxidase and CRP decreased in group B after three (P = 0.028, P = 0.010) and 6 months (P < 0.001, P = 0.001), respectively. Roux-en-Y bypass gastroplasty led to decreased proinflammatory parameters together with increased nutritional antioxidants, catalase, and TBARS, and decreased GSH 6 months after surgery.
Resumo:
The aim of this study was to describe the status of oxidative stress and antioxidant biomarkers and their association with metabolic and body composition components of HIV-lipodystrophy syndrome. In a cross-sectional study of blood samples from HIV-infected men with lipodystrophy syndrome (HIV+LIPO+ = 10), HIV-infected men without lipodystrophy syndrome (HIV+LIPO- = 22), and healthy subjects (control = 12), the following oxidative stress biomarkers were analyzed: total hydroperoxide, thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP). In addition, antioxidant biomarkers, including total glutathione, uric acid, alpha-tocopherol, and metabolic components were tested. Dual-energy x-ray absorciometry (DXA) was used to measure the fat mass. The duration of HIV infection and the duration and type of highly active antiretroviral therapy were similar between the two HIV-infected groups. Higher levels of total hydroperoxide were observed in the HIV+LIPO+ (50 +/- 33 H(2)O(2)/L) group compared to the HIV+LIPO-(19 +/- 13 H(2)O(2)/L) and control (5 +/- 5 H(2)O(2)/L) groups (p < 0.05). Similarly, higher levels of AOPP were observed in the HIV+LIPO+ (326 +/- 173 mu mol/L) group compared to the HIV+LIPO- (105 +/- 92 mu mol/L) and control groups (80 +/- 20 mu mol/L) (p < 0.05). Total hydroperoxide significantly correlated with insulin serum levels in the HIV+LIPO+ (r = 0.47, p < 0.05) and HIV+LIPO- groups (r = 0.29, p < 0.05), while AOPP significantly correlated with insulin serum levels in the HIV+LIPO+ (r = 0.73, p < 0.05) and HIV+LIPO- (r = 0.54, p < 0.05) groups. Therefore, higher lipid and protein oxidation were found in HIV-infected patients with lipodystrophy syndrome, and both were associated with insulin levels.
Resumo:
Tamoxifen has been suggested to produce beneficial cardiovascular effects, although the mechanisms for these effects are not fully known. Moreover, although tamoxifen metabolites may exhibit 30-100 times higher potency than the parent drug, no previous study has compared the effects produced by tamoxifen and its metabolites on vascular function. Here, we assessed the vascular responses to acetylcholine and sodium nitroprusside on perfused hindquarter vascular bed of rats treated with tamoxifen or its main metabolites (N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen, and endoxifen) for 2 weeks. Plasma and whole-blood thiobarbituric acid reactive substances (TBARS) concentrations were determined using a fluorometric method. Plasma nitrite and NOx (nitrite + nitrate) concentrations were determined using an ozone-based chemiluminescence assay and Griess reaction, respectively. Treatment with tamoxifen reduced the responses to acetylcholine (pD(2) = 2.2 +/- 0.06 and 1.9 +/- 0.05 after vehicle and tamoxifen, respectively; P < 0.05), while its metabolites improved these responses (pD(2) = 2.5 +/- 0.04 after N-desmethyl-tamoxifen, 2.5 +/- 0.03 after 4-hydroxy-tamoxifen, and 2.6 +/- 0.08 after endoxifen; P < 0.01). Tamoxifen and its metabolites showed no effect on endothelial-independent responses to sodium nitroprusside (P > 0.05). While tamoxifen treatment resulted in significantly higher plasma and whole blood lipid peroxide levels (37% and 62%, respectively; both P < 0.05), its metabolites significantly decreased lipid peroxide levels (by approximately 50%; P < 0.05). While treatment with tamoxifen decreased the concentrations of markers of nitric oxide formation by approximately 50% (P < 0.05), tamoxifen metabolites had no effect on these parameters (P > 0.05). These results suggest that while tamoxifen produces detrimental effects, its metabolites produce counteracting beneficial effects on the vascular system and on nitric oxide/reactive oxygen species formation.
Resumo:
The current therapy of acute pulmonary embolism is focused on removing the mechanical obstruction of the pulmonary vessels. However, accumulating evidence suggests that pulmonary vasoconstriction drives many of the hemodynamic changes found in this condition. We examined the effects of stimulation of soluble guanylate cyclase with BAY 41-2272 (5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine) in an anesthetized dog model of acute pulmonary embolism. Hemodynamic and arterial blood gas evaluations were performed in non-embolized dogs treated with vehicle (N = 5), and in embolized dogs (intravenous injections of microspheres) that received BAY 41-2272 intravenously in doses of 0.03, 0.1, 0.3, and 1 mg/kg/h or vehicle (1 ml/kg/h of 1.13% ethanol in saline, volume/volume). Plasma cGMP and thiobarbituric acid reactive substances concentrations were determined using a commercial enzyme immunoassay and a fluorometric method, respectively. The infusion of BAY 41-2272 resulted in a decrease in pulmonary artery pressure by similar to 29%, and in pulmonary vascular resistance by similar to 46% of the respective increases induced by lung embolization (both P<0.05). While the higher doses of BAY 41-2272 produced no additional effects on the pulmonary circulation, they caused significant arterial hypotension and reduction in systemic vascular resistance (both P<0.05). Although BAY 41-2272 increased cGMP concentrations (P<0.05), it did not affect the hypoxemia and the increased oxidative stress caused by lung embolization. These results suggest that stimulation of soluble guanylate cyclase with low (but not high) doses of BAY 41-2272 produces selective pulmonary vasodilation during acute pulmonary embolism. The dose-dependent systemic effects produced by BAY 41-2272, however, may limit its usefulness in larger doses. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The role of alpha-tocopherol during nephrogenesis was investigated in rats subjected to maternal undernutrition, which reduces the number of nephrons. alpha-tocopherol (350 mg/kg, p.o.) was administered daily to well-nourished or malnourished Wistar dams during pregnancy, or to prenatal undernourished rats during lactation. The kidneys of 1- and 25-day-old offspring were removed to evaluate expression of angiotensin II (Ang II) and to correlate this with expression of proliferating cell nuclear antigen, alpha-smooth muscle actin, fibronectin and vimentin in the glomeruli and tubulointerstitial space. One-day-old prenatally undernourished rats had reduced expression of Ang II and of kidney development markers, and presented with an enlarged nephrogenic zone. Maternal administration of alpha-tocopherol restored the features of normal kidney development in undernourished rats. Twenty-five-day-old prenatally undernourished progeny had fewer glomeruli than the control group. Conversely, animals from mothers that received alpha-tocopherol during lactation presented with the same number of glomeruli and the same glomerular morphometrical profile as the control group. Analyzing the levels of thiobarbituric acid reactive substances in the liver in conjunction with kidney development markers, it is plausible that alpha-tocopherol had antioxidant and non-antioxidant actions. This study provides evidence that alpha-tocopherol treatment restored Ang II expression, and subsequently restored renal structural development.
Resumo:
Introduction: Inhibition of matrix metalloproteinases (MMPs) improves the hemodynamics during acute pulmonary embolism (APE) and oxidative stress upregulates MMPs. We compared the effects of different NO-cGMP pathway activators on APE-induced increases in MMPs. Materials and Methods: Hemodynamic and biochemical evaluations were performed in non-embolized dogs treated with saline (N = 5), and in microspheres embolized dogs receiving saline (n = 9), or nitrite (6.75 mu mol/kg i.v. over 15 min followed by 0.28 mu mol/kg/min; n = 5), or sildenafil (0.25 mg/kg; n = 5), or BAY 41-2272 (0.03, 0.1, 0.3, and 1 mg/kg/h; n = 5). Plasma thiobarbituric acid reactive substances (TBARS) concentrations were determined. Zymograms of plasma samples were performed, and in vitro antioxidant effects or inhibition of MMPs by these drugs were examined. Results: APE increased mean pulmonary artery pressure by similar to 25 mmHg. Nitrite, BAY 41-2272, or sildenafil reversed this increase by similar to 40% (P < 0.05). Similar effects were seen on the pulmonary vascular resistance. While both nitrite and sildenafil produced no systemic effects, the highest dose of BAY 41-2272 produced systemic hypotension (P<0.05). While nitrite and sildenafil blunted the increases in plasma pro-MMP-9 levels and TBARS (all P < 0.05), BAY 41-2272 produced no such effects. Nitrite and sildenafll produced in vitro antioxidant effects and inhibited MMPs only at high concentrations. BAY 41-2272 produced no such effects. Conclusions: Activation of the NO-cGMP pathway with nitrite or sildenafil, but not with BAY 41-2272, attenuates APE-induced oxidative stress and increased MMP-9 levels. These findings are consistent with the idea that NO-cGMP pathway activators with antioxidant effects prevent the release of MMP-9 during APE. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Acute pulmonary embolism produces acute pulmonary hypertension, which can be counteracted by activating the nitric oxide-cyclic guanosine 3`,5`-monophosphate (cGMP) pathway. While previous studies have shown that sildenafil (an inhibitor of cGMP-specific phosphodiesterase type 5) or nitrite (a storage molecule for nitric oxide) produces beneficial effects during acute pulmonary embolism, no previous study has examined whether the combination of these drugs can produce additive effects. Here, we expand previous findings and examine whether sildenafil enhances the beneficial haemodynamic effects produced by a low-dose infusion of nitrite in a dog model of acute pulmonary embolism. Haemodynamic and arterial blood gas evaluations were performed in non-embolized dogs treated with saline (n = 4), and in embolized dogs (intravenous injections of microspheres) that received nitrite (6.75 mu mol/kg intravenously over 15 min. followed by 0.28 mu mol/kg/min.) and sildenafil (0.25 mg/kg over 30 min.; n = 8), or nitrite followed by saline (n = 8), or saline followed by sildenafil (n = 7), or only saline (n = 8). Plasma thiobarbituric acid-reactive substances (TBARS) concentrations were determined using a fluorometric method. Acute pulmonary embolism increased pulmonary artery pressure by similar to 24 mmHg. While the infusion of nitrite or sildenafil infusions reversed this increase by similar to 42% (both P < 0.05), the combined infusion of both drugs reversed this increase by similar to 58% (P < 0.05). Similar effects were seen on the pulmonary vascular resistance index. Nitrite or sildenafil alone produced no significant hypotension. However, the combined infusion of both drugs caused transient hypotension (P < 0.05). Both dugs, either alone or combined, blunted the increase in TBARS concentrations caused by acute pulmonary embolism (all P < 0.05). These results suggest that sildenafil improves the beneficial haemodynamic effects of nitrite during acute pulmonary embolism.
Resumo:
While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n = 4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n = 4), sildenafil (0.3 mg/kg, n = 4), or S-methylisothiourea followed by sildenafil (n = 4), and in dogs that received the same drugs and were embolized with silicon microspheres (n = 8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25 +/- 1.7 mm Hg and by 941 +/- 34 dyn s cm(-5) m(-2), respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The vascular remodeling associated with hypertension involves oxidative stress and enhanced matrix metalloproteinases (MMPs) expression/activity, especially MMP-2. While previous work showed that lercanidipine, a third-generation dihydropyridine calcium channel blocker (CCB), attenuated the oxidative stress and increased MMP-2 expression/activity in two-kidney, one-clip (2K1C) hypertension, no previous study has examined whether first- or second-generation dihydropyridines produce similar effects. We compared the effects of nifedipine, nimodipine, and amlodipine on 2K1C hypertension-induced changes in systolic blood pressure (SBP), vascular remodeling, oxidative stress, and MMPs levels/activity. Sham-operated and 2K1C rats were treated with water, nifedipine 10 mg/kg/day, nimodipine 15 mg/kg/day, or amlodipine 10 mg/kg/day by gavage, starting 3 weeks after hypertension was induced. SBP was monitored weekly. After 6 weeks of treatment, quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin-stained sections. Aortic and systemic reactive oxygen species levels were measured by using dihydroethidine and thiobarbituric acid-reactive substances (TBARs), respectively. Aortic MMP-2 levels and activity were determined by gelatin zymography, in situ zymography, and immunofluorescence. Nifedipine, nimodipine, or amlodipine attenuated the increases in SBP in hypertensive rats by approximately 17% (P<0.05) and prevented vascular hypertrophy (P<0.05). These CCBs blunted 2K1C-induced increases in vascular oxidative stress and plasma TBARs concentrations (P<0.05). All dihydropyridines attenuated the increases in aortic MMP-2 levels and activity associated with 2K1C hypertension. These findings suggest lack of superiority of one particular dihydropyridine, at least with respect to antioxidant effects, MMPs downregulation, and inhibition of vascular remodeling in hypertension.
Resumo:
Background and purpose: Increased oxidative stress and up-regulation of matrix metalloproteinases (MMPs) may cause structural and functional vascular changes in renovascular hypertension. We examined whether treatment with spironolactone (SPRL), hydrochlorothiazide (HCTZ) or both drugs together modified hypertension-induced changes in arterial blood pressure, aortic remodelling, vascular reactivity, oxidative stress and MMP levels and activity, in a model of renovascular hypertension. Experimental approach: We used the two-kidney,one-clip (2K1C) model of hypertension in Wistar rats. Sham-operated or hypertensive rats were treated with vehicle, SPRL (25 mg center dot kg-1 center dot day-1), HCTZ (20 mg center dot kg-1 center dot day-1) or a combination for 8 weeks. Systolic blood pressure was monitored weekly. Aortic rings were isolated to assess endothelium-dependent and -independent relaxations. Morphometry of the vascular wall was carried out in sections of aorta. Aortic NADPH oxidase activity and superoxide production were evaluated. Formation of reactive oxygen species was measured in plasma as thiobarbituric acid-reactive substances. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry and immunohistochemistry. Key results: Treatment with SPRL, HCTZ or the combination attenuated 2K1C-induced hypertension, and reversed the endothelial dysfunction in 2K1C rats. Both drugs or the combination reversed vascular aortic remodelling induced by hypertension, attenuated hypertension-induced increases in oxidative stress and reduced MMP-2 levels and activity. Conclusions and implications: SPRL or HCTZ, alone or combined, exerted antioxidant effects, and decreased renovascular hypertension-induced MMP-2 up-regulation, thus improving the vascular dysfunction and remodelling found in this model of hypertension.
Resumo:
Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been widely associated to beneficial effects over different neuropathologies, but only a few studies associate them to Parkinson`s disease (PD). Rats were submitted to chronic supplementation (21-90 days of life) with fish oil, rich in omega-3 PUFAs, and were uni- or bilaterally lesioned with 4 mu g of the neurotoxin 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle Although lipid incorporation was evidenced in neuronal membranes, it was not sufficient to compensate motor deficits induced by 6-OHDA. In contrast, omega-3 PUFAs were capable of reducing rotational behavior induced by apomorphine, suggesting neuroprotection over dyskinesia The beneficial effects of omega-3 PUFAs were also evident in the maintenance of thiobarbituric acid reactive substances index from animals lesioned with 6-OHDA similar to levels from SHAM and intact animals. Although omega-3 PUFAs did not modify the tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area, nor the depletion of dopamine (DA) and its metabolites in the striatum, DA turnover was increased after omega-3 PUFAs chronic supplementation Therefore, it is proposed that omega-3 PUFAs action characterizes the adaptation of remaining neurons activity. altering striatal DA turnover without modifying the estimated neuronal population. (C) 2009 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved
Resumo:
Abnormal matrix metalloproteinases (MMPs) activity causes cardiovascular diseases. Because hyperglycemia increase MMPs activities through increased oxidative stress. we hypothesized that antioxidant effects produced by lercanidipine could attenuate the increases in MMP-2 expression/activity in diabetic rats. Control and diabetic (alloxan-induced diabetes) rats received lercanidipine 2.5 mg/kg/day (or tap water) starting three weeks after alloxan (or vehicle) injections. Blood pressure was monitored weekly. After six weeks of treatment, vascular reactivity and structural changes were assessed in aortic rings. MMP-2 levels were determined by gelatin zymography, and MMP-2/tissue inhibitor of metalloproteinases (TIMP)-2 mRNA levels were determined by quantitative real time RT-PCR. Plasma thiobarbituric acid reactive substances concentrations were determined by fluorimetry. Lercanidipine produced antihypertensive effects (201 +/- 5 vs. 163 +/- 7 mm Hg in diabetic rats untreated and treated with lercaniclipine, respectively; P < 0.01) and reversed the impairment in endothelium-dependent vasorelaxation in diabetic rats. Increased MMP-2 and Pro-MMP-2 levels were found in the aortas of diabetic rats (both P < 0.001). Lercandipine attenuated the increases in oxidative stress and in MMP-2 (both P < 0.05). While diabetes induced no major structural changes, it caused a 16-fold increase in the ratio of MMP-2/TIMP-2 mRNA expression, which was completely reversed by lercanidipine (both P < 0.001). These results show that antioxidant and beneficial vascular effects produced by lercanidipine in diabetic rats are associated with reversion of the imbalance in vascular MMP-2MMP-2 expression. (C) 2008 Published by Elsevier B.V.
Resumo:
Introduction:In order to examine the effectiveness of vitamin C (ascorbic acid) in combating the oxidative insult caused by Trypanosoma cruzi during the development of the chronic phase of Chagas disease, Swiss mice were infected intraperitoneally with 5.0 × 104 trypomastigotes of T. cruzi QM1strain.Methods:Mice were given supplements of two different doses of vitamin C for 180 days. Levels of lipid oxidation (as indicated by thiobarbituric acid reactive substances-TBARS), total peroxide, vitamin C, and reduced glutathione were measured in the plasma, TBARS, total peroxide and vitamin C were measured in the myocardium and histopathologic analysis was undertaken in heart, colon and skeletal muscle.Results:Animals that received a dose equivalent to 500 mg of vitamin C daily showed increased production of ROS in plasma and myocardium and a greater degree of inflammation and necrosis in skeletal muscles than those that received a lower dose or no vitamin C whatsoever.Conclusion:Although some research has shown the antioxidant effect of vitamin C, the results showed that animals subject to a 500 mg dose of vitamin C showed greater tissue damage in the chronic phase of Chagas disease, probably due to the paradoxical actions of the substance, which in this pathology, will have acted as a pro-oxidant or pro-inflammatory.
Resumo:
Adding Omega fatty acids (ω) 3 to the diet of stud bucks, the quality of sperm and their resistance to cryopreservation could increase. The aim of this study is to determine the effect of supplementation with ω3 on the metabolic state, sperm quality and resistance to freezing, in bucks kept in confinement under natural photoperiod. The experiment will be conducted in the facilities of the Faculty of Agronomy and Veterinary, UNRC (National University of Río Cuarto). Ten Anglo Nubian adult bucks, trained for semen collection with artificial vagina will be used. Males will be randomly allocated into 2 groups (5 animals each): control (C) and treatment (T). During the breeding season, group C will be fed with a ration of alfalfa and ground corn, according to the requirements for each category and sex (NRC, 2007). Group T will receive the same diet with the addition of linseeds. Both will have free access to water. Every week, semen of each buck, will be collected, evaluated and frozen. Sperm quality “in vitro” after thawing will be studied with a digital image analyzer. To assess oxidative stress in fresh and cryopreserved semen, levels of thiobarbituric acid reactive substances (TBARS) and quantification of the activity of superoxide dismutase (SOD) and catalase (CAT) will be determined. To establish the metabolic state, blood samples will be collected every two weeks. The statistical analysis will include an exploratory data analysis, multivariate analysis of multiple correspondences on a completely randomized design, analysis of variance and Fisher post-test. The level of significance will be set at P <0.05 and all results will be expressed as means ± SEM.