914 resultados para Texture profile analysis
Resumo:
Context: The relationships among the different eating disorders that exist in the community are poorly understood, especially for residual disorders in which bingeing or purging occurs in the absence of other behaviors. Objective: To examine a community sample for the number of mutually exclusive weight and eating profiles. Design: Data regarding lifetime eating disorder symptoms and weight range were submitted to a latent profile analysis. Profiles were compared regarding personality, current eating and weight, retrospectively reported life events, and lifetime depressive psychopathology. Setting: Longitudinal study among female twins from the Australian Twin Registry in whom eating was assessed by a telephone interview. Participants: A community sample of 1002 twins (individuals) who had participated in earlier waves of data collection. Main Outcome Measures: Number and clinical character of latent profiles. Results: The best fit was a 5-profile solution with women who were (1) of normal weight with few lifetime eating disorders (4.3%), (2) overweight (10.6% had a lifetime eating disorder), (3) underweight and generally had no eating disorders except for 5.3% who had restricting anorexia nervosa, (4) of low to normal weight (89.0% had a lifetime eating disorder), and (5) obese (37.0% had a lifetime eating disorder). Each profile contained more than 1 type of lifetime eating disorder except for the third profile. Women in the first and third profiles had the best functioning, with women in the fourth and fifth profiles having similarly poorer functioning. The women in the fourth group had a symptom profile distinctive from the other 4 groups in terms of severity; they were also more likely to have had lifetime major depression and suicidality. Conclusion: Lifetime weight ranges and the severity of eating disorder symptoms affected clustering more than the type of eating disorder symptom.
Resumo:
This paper presents a methodology to forecast the hourly and daily consumption in households. The methodology was validated for households in Lisbon region, Portugal. The paper shows that the forecast tool allows obtaining satisfactory results for forecasting. Models of demand response allow the support of consumer’s decision in exchange for an economic benefit by the redefinition of load profile or changing the appliance consumption period. It is also in the interest of electric utilities to take advantage of these changes, particularly when consumers have an action on the demand-side management or production. Producers need to understand the load profile of households that are connected to a smart grid, to promote a better use of energy, as well as optimize the use of micro-generation from renewable sources, not only to delivering to the network but also in self-consumption.
Resumo:
This paper presents a methodology to forecast the hourly and daily consumption in households assisted by cyber physical systems. The methodology was validated using a database of consumption of a set of 93 domestic consumers. Forecast tools used were based on Fast Fourier Series and Generalized Reduced Gradient. Both tools were tested and their forecast results were compared. The paper shows that both tools allow obtaining satisfactory results for energy consumption forecasting.
Resumo:
2016
Resumo:
Instrumental investigations of texture have been performed using texture profile analysis. The following textural parameters have been assessed: hardness, gumminess, chewiness, springiness, cohesiveness and adhesiveness. The fillets of both species have been prepared from deep frozen headed and gutted raw material without fins after frozen storage of 0, 23 and 34 weeks, respectively. Deep freezing of fishes has been performed on board immediately after hauling or after 6 day’s storage in ice. Before texture measurement the raw material has been thawed and the measurement was carriedout on both thawed and microwave-heated fillets. In general, it can be concluded that both fish species are comparable in their texture parameters. The hardness of heated dab has been slightly higher comparing with that one of plaice. All other texture parameters showed a fairly good conformity between both species. While the hardness of dab increased during heating, it was decreasing in plaice. This was the only one significant difference between both fishes during heating. Adhesiveness as well as cohesiveness increased remarkably during heating. Changes effected by ice storage were only slight. Frozen storage, in contrast, caused a significant decrease of adhesiveness measured after heating the fillets of both species.
Resumo:
Commercially processed and for industrial purpose destined minces of several fish species were characterised with regard to their texture using texture profile analysis (TPA) of boiled specimen and by measuring the penetration force on raw minces as well as with regard to their colour by instrumental measurements of CIELab values. Concerning the parameters investigated the minces were in most cases significantly different. It was evident that the fish species is responsible for the functional properties of these intermediate products. For the TPA the influence of the measurement conditions was demonstrated and an appropriate method derived. IEF of proteins was used to verify the declared fish species. Unfortunately, this was not possible in all cases due to the lack of comparable pattern. Both the DMA and FA content were found to be in the normal range except those for saithe.
Resumo:
Black mouth croaker (Atrobucca nibe) is considered as a new valuable fish stock in the Oman Sea. In this study, surimi was manufactured from nonmarket size of the fish, manually and different cryoprotectant agents were added to the surimi. Finally changes in physiochemical, microbiological and sensory quality, characteristics of the surimi and kamaboko gel samples were assessed during 6 months at freezing storage (-18ºC). Surimi samples with the addition of Iranian tragacanth gum (TG), xanthan gum (XG), chitosan (CS) and whey protein concentrate (WPC) at 1% (w/w) were prepared to evaluate their impacts as a cryoprotectant on the surimi, individually. The results showed that the whiteness and lightness indexes in all surimi samples were gradually decreased during frozen storage. This trend of decreasing was more intensity in the control sample from 61.08±0.131 to 54.21±0.067 was recorded (p<0.05). Water holding capacity (WHC) in all treatments was decreased during 6 months. The lowest WHC (g/g) was obtained in the surimi without cryoprotectants and maximum WHC was measured in Tcs and Twpc samples, respectively (p<0.05). The lowest breaking force was calculated in Txg (166.00±22.627 g) and Tc (271.50±263.16 g) during 6 months at frozen storage, respectively (p<0.05), while Twpc treatment with slight variations showed the highest breaking force (p<0.05). Also, the lowest gel strength was obtained in Txg (68.22±6.740 g.cm) after 6 month of frozen storage (p<0.05). All Kamaboko surimi gels texture profile analysis parameters decreaced with increasing shelf life. This decreasing trend in the control sample was more severe. Floding results were reduced in all samples during storage (p<0.05). The best protective results probably were obtained in WPC, chitosan and commercial cryoprotectant agents, respectively due to protein stabilization of myofibrillar proteins and the protein-protein network structure, leading to the formation of surimi gel with strong textural properties during frozen conditions. The average number of surimi polygonal structures were significantly decreased (number per mm2) and their area were significantly increased (μm2) in all treatments (p<0.05). With increasing storage time, moisture, protein contents and pH were decreaced. Maximun TVB-N index was calculated in Tc (7.93±0.400 mg/100g) and Txg (7.88±0.477), respectively (p<0.05). TBRAs index was increased in all treatments during frozen storage, while this trend was reached in maximum value in Tc (p<0.05). Sensory evaluation of the fish finger quality characteristics (color, odor, texture and overall acceptability) preapare from frozen black mouth croaker surimi was decreaced during 6 month frozen storage. After the period of frozen storage the highest quality scores were measured in Twpc, Tcs and Tcc samples, respectively (p<0.05). In this study, coliform bacteria were not found in all treatments during frozen storage. The surimi sample containing chitosan showed lower mesophilic and psychrotropic bacteria (log cfu/g) than other treatments during frozen storage (p<0.05). Salt-soluble proteins extractions of all treatments were decreased during frozen storage. This decreacing trend was highest in Tcs (45.74±0.176%) and lowest in Tc treatments after 6 month of frozen storage (29.92±0.224%) (p<0.05). Although commercial cryoprotectant agents were successful in limiting the denaturation of proteins but sugar contents were not accepted for diabetics or those who disagree with the sweet taste and high calorie food. Hence, commercial cryoprotectant agents can be replaced with whey protein concentrate and chitosan at 1% level (w/w) consider that they were showed proper protection of the surimi myofibrillar proteins during storage.
Resumo:
The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.
Resumo:
This study described the drug release, rheological (dynamic and flow) and textural/mechanical properties of a series of formulations composed of 15% w/w polymethylvinylether-co-maleic anhydride (PMVE-MA), 0-9% w/w polyvinylpyrrolidone (PVP) and containing 1-5% w/w tetracycline hydrochloride, designed for the treatment of periodontal disease. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing the concentration of PVP sequentially increased the zero-rate viscosity (derived from the Cross model) and the hardness and compressibility of the formulations (derived from texture profile analysis). These affects may be accredited to increased polymer entanglement and, in light of the observed synergy between the two polymers with respect to their textural and rheological properties, interaction between PVP and PMVE-MA. Increasing the concentration of PVP increased the storage and loss moduli yet decreased the loss tangent of all formulations, indicative of increased elastic behaviour. Synergy between the two polymers with respect to their viscoelastic properties was observed. Increased adhesiveness, associated with increased concentrations of PVP was ascribed to the increasing bioadhesion and tack of the formulations. The effect of increasing drug concentration on the rheological and textural properties was dependent on PVP concentration. At lower concentrations (0, 3% w/w) no effect was observed whereas, in the presence of 9% w/w PVP, increasing drug concentration increased formulation elasticity, zero rate viscosity, hardness and compressibility. These observations were ascribed to the greater mass of suspended drug in formulations containing the highest concentration of PVP. Drug release from formulations containing 6 and 9% PVP (and 5% w/w drug) was prolonged and swelling/diffusion controlled. Based on the drug release, rheological and textural properties, it is suggested that the formulation containing 15% w/w PMVE-MA, 6% w/w PVP and tetracycline hydrochloride (5% w/w) may be useful for the treatment of periodontal disease.
Resumo:
This study describes the formulation, characterisation and preliminary clinical evaluation of mucoadhesive, semi-solid formulations containing hydroxyethylcellulose (HEC, 1-5%, w/w), polyvinylpyrrolidine (PVP, 2 or 3%, w/w), poly carbophil (PC, 1 or 3%, w/w) and tetracycline (5%, w/w, as the hydrochloride). Each formulation was characterised in terms of drug release, hardness, compressibility, adhesiveness (using a texture analyser in texture profile analysis mode), syringeability (using a texture analyser in compression mode) and adhesion to a mucin disc (measured as a detachment force using the texture analyser in tensile mode). The release exponent for the formulations ranged from 0.78+/-0.02 to 1.27+/-0.07, indicating that drug release was non-diffusion controlled. Increasing the concentrations of each polymeric component significantly increased the time required for 10 and 30% release of the original mass of tetracycline, due to both increased viscosity and, additionally, the unique swelling properties of the formulations. Increasing concentrations of each polymeric component also increased the hardness, compressibility, adhesiveness, syringeability and mucoadhesion of the formulations. The effects on product hardness, compressibility and syringeability may be due to increased product viscosity and, hence, increased resistance to compression. Similarly, the effects of these polymers on adhesiveness/mucoadhesion highlight their mucoadhesive nature and, importantly, the effects of polymer state (particularly PC) on these properties. Thus, in formulations where the neutralisation of PC was maximally suppressed, adhesiveness and mucoadhesion were also maximal. Interestingly, statistical interactions were primarily observed between the effects of HEC and PC on drug release, mechanical and mucoadhesive properties. These were explained by the effects of HEC on the physical state of PC, namely swollen or unswollen. In the preliminary clinical evaluation, a formulation was selected that offered an appropriate balance of the above physical properties and contained 3% HEC, 3% PVP and 1% PC, in addition to tetracycline 5% (as the hydrochloride). The clinical efficacy of this (test) formulation was compared to an identical tetracycline-devoid (control) formulation in nine periodontal pockets (greater than or equal to 5 mm depth). One week following administration of the test formulation, there was a significant improvement in periodontal health as identified by reduced numbers of sub-gingival microbial pathogens. Therefore, it can be concluded that, when used in combination with mechanical plaque removal, the tetracycline-containing semi-solid systems described in this study would augment such therapy by enhancing the removal of pathogens, thus improving periodontal health. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this study it has been demonstrated that mixtures of two solid drugs, ibuprofen and methyl nicotinate, with different but complementary pharmacological activities and which exist as a single liquid phase over a wide composition range at skin temperature, can be formulated as o/w emulsions without the use of an additional hydrophobic carrier. These novel dual drug systems provided significantly enhanced in vitro penetration rates through a model lipophilic barrier membrane compared to conventional individual formulations of each active. Thus, for ibuprofen, drug penetration flux enhancements of three- and 10-fold were observed when compared to an aqueous ibuprofen suspension and a commercial alcohol-based ibuprofen formulation, respectively. Methyl nicotinate penetration rates were shown to be similar for aqueous gels and emulsified systems. Mechanisms explaining these observations are proposed. Novel dual drug formulations of ibuprofen and methyl nicotinate, formulated within the liquid range at skin temperature, were investigated by oscillatory rheology and texture profile analysis. demonstrating the effects of drug and viscosity enhancer concentrations, and disperse phase type upon the rheological, mechanical and drug penetration properties of these systems. (C) 2000 Elsevier Science B.V. All rights reserved.