950 resultados para Text-to-speech
Resumo:
Mode of access: Internet.
Resumo:
More information is now readily available to computer users than at any time in human history; however, much of this information is often inaccessible to people with blindness or low-vision, for whom information must be presented non-visually. Currently, screen readers are able to verbalize on-screen text using text-to-speech (TTS) synthesis; however, much of this vocalization is inadequate for browsing the Internet. An auditory interface that incorporates auditory-spatial orientation was created and tested. For information that can be structured as a two-dimensional table, links can be semantically grouped as cells in a row within an auditory table, which provides a consistent structure for auditory navigation. An auditory display prototype was tested.^ Sixteen legally blind subjects participated in this research study. Results demonstrated that stereo panning was an effective technique for audio-spatially orienting non-visual navigation in a five-row, six-column HTML table as compared to a centered, stationary synthesized voice. These results were based on measuring the time- to-target (TTT), or the amount of time elapsed from the first prompting to the selection of each tabular link. Preliminary analysis of the TTT values recorded during the experiment showed that the populations did not conform to the ANOVA requirements of normality and equality of variances. Therefore, the data were transformed using the natural logarithm. The repeated-measures two-factor ANOVA results show that the logarithmically-transformed TTTs were significantly affected by the tonal variation method, F(1,15) = 6.194, p= 0.025. Similarly, the results show that the logarithmically transformed TTTs were marginally affected by the stereo spatialization method, F(1,15) = 4.240, p=0.057. The results show that the logarithmically transformed TTTs were not significantly affected by the interaction of both methods, F(1,15) = 1.381, p=0.258. These results suggest that some confusion may be caused in the subject when employing both of these methods simultaneously. The significant effect of tonal variation indicates that the effect is actually increasing the average TTT. In other words, the presence of preceding tones increases task completion time on average. The marginally-significant effect of stereo spatialization decreases the average log(TTT) from 2.405 to 2.264.^
Resumo:
A comunicação verbal humana é realizada em dois sentidos, existindo uma compreensão de ambas as partes que resulta em determinadas considerações. Este tipo de comunicação, também chamada de diálogo, para além de agentes humanos pode ser constituído por agentes humanos e máquinas. A interação entre o Homem e máquinas, através de linguagem natural, desempenha um papel importante na melhoria da comunicação entre ambos. Com o objetivo de perceber melhor a comunicação entre Homem e máquina este documento apresenta vários conhecimentos sobre sistemas de conversação Homemmáquina, entre os quais, os seus módulos e funcionamento, estratégias de diálogo e desafios a ter em conta na sua implementação. Para além disso, são ainda apresentados vários sistemas de Speech Recognition, Speech Synthesis e sistemas que usam conversação Homem-máquina. Por último são feitos testes de performance sobre alguns sistemas de Speech Recognition e de forma a colocar em prática alguns conceitos apresentados neste trabalho, é apresentado a implementação de um sistema de conversação Homem-máquina. Sobre este trabalho várias ilações foram obtidas, entre as quais, a alta complexidade dos sistemas de conversação Homem-máquina, a baixa performance no reconhecimento de voz em ambientes com ruído e as barreiras que se podem encontrar na implementação destes sistemas.
Resumo:
Speech perception routinely takes place in noisy or degraded listening environments, leading to ambiguity in the identity of the speech token. Here, I present one review paper and two experimental papers that highlight cognitive and visual speech contributions to the listening process, particularly in challenging listening environments. First, I survey the literature linking audiometric age-related hearing loss and cognitive decline and review the four proposed causal mechanisms underlying this link. I argue that future research in this area requires greater consideration of the functional overlap between hearing and cognition. I also present an alternative framework for understanding causal relationships between age-related declines in hearing and cognition, with emphasis on the interconnected nature of hearing and cognition and likely contributions from multiple causal mechanisms. I also provide a number of testable hypotheses to examine how impairments in one domain may affect the other. In my first experimental study, I examine the direct contribution of working memory (through a cognitive training manipulation) on speech in noise comprehension in older adults. My results challenge the efficacy of cognitive training more generally, and also provide support for the contribution of sentence context in reducing working memory load. My findings also challenge the ubiquitous use of the Reading Span test as a pure test of working memory. In a second experimental (fMRI) study, I examine the role of attention in audiovisual speech integration, particularly when the acoustic signal is degraded. I demonstrate that attentional processes support audiovisual speech integration in the middle and superior temporal gyri, as well as the fusiform gyrus. My results also suggest that the superior temporal sulcus is sensitive to intelligibility enhancement, regardless of how this benefit is obtained (i.e., whether it is obtained through visual speech information or speech clarity). In addition, I also demonstrate that both the cingulo-opercular network and motor speech areas are recruited in difficult listening conditions. Taken together, these findings augment our understanding of cognitive contributions to the listening process and demonstrate that memory, working memory, and executive control networks may flexibly be recruited in order to meet listening demands in challenging environments.
Resumo:
Il periodo in cui viviamo rappresenta la cuspide di una forte e rapida evoluzione nella comprensione del linguaggio naturale, raggiuntasi prevalentemente grazie allo sviluppo di modelli neurali. Nell'ambito dell'information extraction, tali progressi hanno recentemente consentito di riconoscere efficacemente relazioni semantiche complesse tra entità menzionate nel testo, quali proteine, sintomi e farmaci. Tale task -- reso possibile dalla modellazione ad eventi -- è fondamentale in biomedicina, dove la crescita esponenziale del numero di pubblicazioni scientifiche accresce ulteriormente il bisogno di sistemi per l'estrazione automatica delle interazioni racchiuse nei documenti testuali. La combinazione di AI simbolica e sub-simbolica può consentire l'introduzione di conoscenza strutturata nota all'interno di language model, rendendo quest'ultimi più robusti, fattuali e interpretabili. In tale contesto, la verbalizzazione di grafi è uno dei task su cui si riversano maggiori aspettative. Nonostante l'importanza di tali contributi (dallo sviluppo di chatbot alla formulazione di nuove ipotesi di ricerca), ad oggi, risultano assenti contributi capaci di verbalizzare gli eventi biomedici espressi in letteratura, apprendendo il legame tra le interazioni espresse in forma a grafo e la loro controparte testuale. La tesi propone il primo dataset altamente comprensivo su coppie evento-testo, includendo diverse sotto-aree biomediche, quali malattie infettive, ricerca oncologica e biologia molecolare. Il dataset introdotto viene usato come base per l'addestramento di modelli generativi allo stato dell'arte sul task di verbalizzazione, adottando un approccio text-to-text e illustrando una tecnica formale per la codifica di grafi evento mediante testo aumentato. Infine, si dimostra la validità degli eventi per il miglioramento delle capacità di comprensione dei modelli neurali su altri task NLP, focalizzandosi su single-document summarization e multi-task learning.
Resumo:
In the last few years, the number of systems and devices that use voice based interaction has grown significantly. For a continued use of these systems, the interface must be reliable and pleasant in order to provide an optimal user experience. However there are currently very few studies that try to evaluate how pleasant is a voice from a perceptual point of view when the final application is a speech based interface. In this paper we present an objective definition for voice pleasantness based on the composition of a representative feature subset and a new automatic voice pleasantness classification and intensity estimation system. Our study is based on a database composed by European Portuguese female voices but the methodology can be extended to male voices or to other languages. In the objective performance evaluation the system achieved a 9.1% error rate for voice pleasantness classification and a 15.7% error rate for voice pleasantness intensity estimation.
Resumo:
Submitted in part fulfillment of the requirements for the degree of Master in Computer Science
Resumo:
In this paper, a module for homograph disambiguation in Portuguese Text-to-Speech (TTS) is proposed. This module works with a part-of-speech (POS) parser, used to disambiguate homographs that belong to different parts-of-speech, and a semantic analyzer, used to disambiguate homographs which belong to the same part-of-speech. The proposed algorithms are meant to solve a significant part of homograph ambiguity in European Portuguese (EP) (106 homograph pairs so far). This system is ready to be integrated in a Letter-to-Sound (LTS) converter. The algorithms were trained and tested with different corpora. The obtained experimental results gave rise to 97.8% of accuracy rate. This methodology is also valid for Brazilian Portuguese (BP), since 95 homographs pairs are exactly the same as in EP. A comparison with a probabilistic approach was also done and results were discussed.
Resumo:
Sistema Texto-Fala (TTS) é atualmente uma tecnologia madura que é utilizada em muitas aplicações. Alguns módulos de um sistema TTS são dependentes do idioma e, enquanto existem muitos recursos disponíveis para a língua inglesa, os recursos para alguns idiomas ainda são limitados. Este trabalho descreve o desenvolvimento de um sistema TTS completo para português brasileiro (PB), o qual também apresenta os recursos já disponíveis. O sistema usa a plataforma MARY e o processo de síntese da voz é baseado em cadeias escondidas de Markov (HMM). Algumas das contribuições deste trabalho consistem na implementação de silabação, determinação da sílaba tônica e conversão grafema-fonema (G2P). O trabalho também descreve as etapas para a organização dos recursos desenvolvidos e a criação de uma voz em PB junto ao MARY. Estes recursos estão disponíveis e facilita a pesquisa na normalização de texto e síntese baseada em HMM par o PB.
Resumo:
Sistemas de reconhecimento e síntese de voz são constituídos por módulos que dependem da língua e, enquanto existem muitos recursos públicos para alguns idiomas (p.e. Inglês e Japonês), os recursos para Português Brasileiro (PB) ainda são escassos. Outro aspecto é que, para um grande número de tarefas, a taxa de erro dos sistemas de reconhecimento de voz atuais ainda é elevada, quando comparada à obtida por seres humanos. Assim, apesar do sucesso das cadeias escondidas de Markov (HMM), é necessária a pesquisa por novos métodos. Este trabalho tem como motivação esses dois fatos e se divide em duas partes. A primeira descreve o desenvolvimento de recursos e ferramentas livres para reconhecimento e síntese de voz em PB, consistindo de bases de dados de áudio e texto, um dicionário fonético, um conversor grafema-fone, um separador silábico e modelos acústico e de linguagem. Todos os recursos construídos encontram-se publicamente disponíveis e, junto com uma interface de programação proposta, têm sido usados para o desenvolvimento de várias novas aplicações em tempo-real, incluindo um módulo de reconhecimento de voz para a suíte de aplicativos para escritório OpenOffice.org. São apresentados testes de desempenho dos sistemas desenvolvidos. Os recursos aqui produzidos e disponibilizados facilitam a adoção da tecnologia de voz para PB por outros grupos de pesquisa, desenvolvedores e pela indústria. A segunda parte do trabalho apresenta um novo método para reavaliar (rescoring) o resultado do reconhecimento baseado em HMMs, o qual é organizado em uma estrutura de dados do tipo lattice. Mais especificamente, o sistema utiliza classificadores discriminativos que buscam diminuir a confusão entre pares de fones. Para cada um desses problemas binários, são usadas técnicas de seleção automática de parâmetros para escolher a representaçãao paramétrica mais adequada para o problema em questão.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Il presente lavoro è strutturato in quattro parti analizzando e comparando le pubblicazioni del settore scientifico italiano, anglofono e tedesco di riferimento. Nel primo capitolo della tesi viene proposta una riflessione sulle parole che ruotano attorno al tema dei DSA e della disabilità. Nel secondo capitolo vengono presentati, a partire dalla letteratura scientifica di riferimento, gli indicatori di rischio che segnalano possibili disturbi specifici di apprendimento e le caratteristiche di apprendimento dei DSA mettendo in luce potenzialità e talenti spesso intrinseci. Nel terzo capitolo viene vagliata la normativa di riferimento, in particolare la recente Legge 170/2010 e le relative Linee Guida. Nel quarto capitolo, partendo dal tema della diffusione delle tecnologie dell’informazione e della comunicazione (da ora in poi TIC) nel mondo della scuola, sono ampiamente trattati i principali strumenti compensativi (sintesi vocale, libri digitali, mappe concettuali, Lavagna Interattiva Multimediale) e le misure dispensative adottabili. Nel quinto capitolo viene analizzato in tutte le sue parti il Piano Didattico Personalizzato (da ora in poi PDP) e viene proposto un possibile modello di PDP pubblicato sul sito dell'Ufficio per l’Ambito Territoriale di Bologna. Nel sesto capitolo della tesi viene presentato il Progetto Regionale ProDSA. Il Progetto, rivolto a studenti, con diagnosi di DSA, delle scuole secondarie di primo grado e del primo biennio delle secondarie di secondo grado dell’Emilia-Romagna, ha visto, grazie a un finanziamento della Regione, la consegna in comodato d'uso gratuito di tecnologie compensative agli alunni che hanno aderito. La sezione empirica del presente lavoro indaga l’uso reale che è stato fatto degli strumenti proposti in comodato d’uso e le motivazioni legate alla scelta di non utilizzarli in classe. Nel settimo capitolo vengono proposti strumenti progettati per rispondere concretamente alle criticità emerse dall'analisi dei dati e per sensibilizzare il mondo della scuola sulle caratteristiche dei DSA.
Resumo:
This paper presents an automatic strategy to decide how to pronounce a Capital Letter Sequence (CLS) in a Text to Speech system (TTS). If CLS is well known by the TTS, it can be expanded in several words. But when the CLS is unknown, the system has two alternatives: spelling it (abbreviation) or pronouncing it as a new word (acronym). In Spanish, there is a high relationship between letters and phonemes. Because of this, when a CLS is similar to other words in Spanish, there is a high tendency to pronounce it as a standard word. This paper proposes an automatic method for detecting acronyms. Additionaly, this paper analyses the discrimination capability of some features, and several strategies for combining them in order to obtain the best classifier. For the best classifier, the classification error is 8.45%. About the feature analysis, the best features have been the Letter Sequence Perplexity and the Average N-gram order.