999 resultados para Terahertz spectroscopy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Terahertz time-domain spectroscopy measurements were made for vertically aligned multi-walled carbon nanotube (VACNT) films. We obtained the frequency dependent complex permittivity and conductivity (on the assumption that permeability μ = 1) of several samples exhibiting Drude behaviour for lossy metals. The obtained material properties of VACNT films provide information for potential microwave and terahertz applications. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optical pump-terahertz probe spectroscopy was used to study the key electronic properties of GaAs, InAs and InP nanowires at room temperature. Of all nanowires studied, InAs nanowires exhibited the highest mobilities of 6000 cm2V-1s-1. InP nanowires featured the longest photoconductivity lifetimes and an exceptionally low surface recombination velocity of 170 cm/s. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accurately measuring the electronic properties of nanowires is a crucial step in the development of novel semiconductor nanowire-based devices. With this in mind, optical pump-terahertz probe (OPTP) spectroscopy is ideally suited to studies of nanowires: it provides non-contact measurement of carrier transport and dynamics at room temperature. OPTP spectroscopy has been used to assess key electrical properties, including carrier lifetime and carrier mobility, of GaAs, InAs and InP nanowires. The measurements revealed that InAs nanowires exhibited the highest mobilities and InP nanowires exhibited the lowest surface recombination velocity. © 2013 Copyright SPIE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

EPSRC, the European Community IST FP6 Integrated, etc

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is demonstrated that distortion of the terahertz beam profile and generation of a cross-polarised component occur when the beam in terahertz time domain spectroscopy and imaging systems interacts with the sample under test. These distortions modify the detected signal, leading to spectral and image artefacts. The degree of distortion depends on the optical design of the system as well as the properties of the sample.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use a (CO2)-C-13 laser as optical pumping source to search for new THz laser lines generated from (CH3OH)-C-13. Nineteen new THz laser lines (also identified as far-infrared, FIR) ranging from 42.3 mu m (7.1 THz) to 717.7 mu m (0.42 THz) are reported. They are characterized in wavelength, offset, relative polarization, relative intensity, and optimum working pressure. We have assigned eight laser lines to specific rotational energy levels in the excited state associated with the C-O stretching mode. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis details the design and applications of a terahertz (THz) frequency comb spectrometer. The spectrometer employs two offset locked Ti:Sapphire femtosecond oscillators with repetition rates of approximately 80 MHz, offset locked at 100 Hz to continuously sample a time delay of 12.5 ns at a maximum time delay resolution of 15.6 fs. These oscillators emit continuous pulse trains, allowing the generation of a THz pulse train by the master, or pump, oscillator and the sampling of this THz pulse train by the slave, or probe, oscillator via the electro-optic effect. Collecting a train of 16 consecutive THz pulses and taking the Fourier transform of this pulse train produces a decade-spanning frequency comb, from 0.25 to 2.5 THz, with a comb tooth width of 5 MHz and a comb tooth spacing of ~80 MHz. This frequency comb is suitable for Doppler-limited rotational spectroscopy of small molecules. Here, the data from 68 individual scans at slightly different pump oscillator repetition rates were combined, producing an interleaved THz frequency comb spectrum, with a maximum interval between comb teeth of 1.4 MHz, enabling THz frequency comb spectroscopy.

The accuracy of the THz frequency comb spectrometer was tested, achieving a root mean square error of 92 kHz measuring selected absorption center frequencies of water vapor at 10 mTorr, and a root mean square error of 150 kHz in measurements of a K-stack of acetonitrile. This accuracy is sufficient for fitting of measured transitions to a model Hamiltonian to generate a predicted spectrum for molecules of interest in the fields of astronomy and physical chemistry. As such, the rotational spectra of methanol and methanol-OD were acquired by the spectrometer. Absorptions from 1.3 THz to 2.0 THz were compared to JPL catalog data for methanol and the spectrometer achieved an RMS error of 402 kHz, improving to 303 kHz when excluding low signal-to-noise absorptions. This level of accuracy compares favorably with the ~100 kHz accuracy achieved by JPL frequency multiplier submillimeter spectrometers. Additionally, the relative intensity performance of the THz frequency comb spectrometer is linear across the entire decade-spanning bandwidth, making it the preferred instrument for recovering lineshapes and taking absolute intensity measurements in the THz region. The data acquired by the Terahertz Frequency Comb Spectrometer for methanol-OD is of comparable accuracy to the methanol data and may be used to refine the fit parameters for the predicted spectrum of methanol-OD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmonic resonance at terahertz (THz) frequencies can be achieved by gating graphene grown via chemical vapour deposition (CVD) to a high carrier concentration. THz time domain spectroscopy of such gated monolayer graphene shows resonance features around 1.6 THz, which appear as absorption peaks when the graphene is electrostatically p-doped and change to enhanced transmission when the graphene is n-doped. Superimposed on the Drude-like frequency response of graphene, these resonance features are related to the inherent poly-crystallinity of CVD graphene. An understanding of these features is necessary for the development of future THz optical elements based on CVD graphene. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-temperature-grown GaAs (LT-GaAs) of 1-um thickness was grown at 250 degrees C on semi-insulating GaAs (001) substrate using EPI GEN-II solid-source MBE system. The sample was then in situ annealed for 10 min at 600 degrees C under As-rich condition. THz emitters were fabricated on this LTGaAs with three different photoconductive dipole antenna gaps of 1-mm, 3-mm, and 5-mm, respectively. The spectral bandwidth of 2.75 THz was obtaind with time domain spectroscopy. It is found that THz emission efficiency is increased with decreasing antenna gap. Two carrier lifetimes, 0.469 ps and 3.759 ps, were obtained with time-resolved transient reflection-type pump-probe spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are established methods for calculating optical constants from measurements using a broadband terahertz (THz) source. Applications to ultrafast THz spectroscopy have adopted the key assumption that the THz beam is treated as a normal incidence plane-wave. We show that this assumption results in a frequency-dependent systematic error, which is compounded by distortion of the beam on introduction of the sample.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors present a review of the advances that have been made to establish terahertz applications in the cultural heritage conservation sector over the last several years. This includes material spectroscopy, 2D and 3D imaging and tomographic studies, using a broad range of terahertz sources demonstrating the breadth and application of this burgeoning community.