896 resultados para Temperate reef fishes
Resumo:
Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.
Resumo:
Tese de Doutoramento, Ciências do Mar, da Terra e do Ambiente, Ramo: Ciências do Mar, Especialização em Ecologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
Large-scale patterns of species diversity in the gastrointestinal helminth faunas of the coral reef fish Epinephelus merra (Serranidae) were investigated in French Polynesia and the South Pacific Ocean. The richer barrier reef community in French Polynesia supported richer parasite communities in E. merra than that on the fringing reef. While parasite communities among fish from the same archipelago were similar, differences in potential host species and the distance between archipelagos may have contributed to a qualitative difference in parasite communities between archipelagos. Digenean community diversity in coral reef fishes was greater in the western South Pacific, following similar patterns in free-living species. However, overall species diversity of camallanid nematodes of coral reef fishes does not appear to have been similarly affected.
Resumo:
Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N, (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The influence of a substratum-disturbing forager, the spotted goatfish Pseudupeneus maculatus on the assemblage of its escorting, opportunistic-feeding fishes was examined at Fernando de Noronha Archipelago (tropical west Atlantic). Followers attracted to spotted goatfish foraging singly differed from followers of spotted goatfish foraging in groups in several characteristics. The larger the nuclear fish group, the greater the species richness and number of individuals of followers. Moreover, groups of foraging spotted goatfish attracted herbivores, not recorded for spotted goatfish foraging singly. The size of follower individuals increased with the size and the number of foraging spotted goatfish. The zoobenthivorous habits of the spotted goatfish and its ability to disturb a variety of soft substrata render it an important nuclear fish for several follower species of the reef fish assemblage at Fernando de Noronha. (c) 2006 the Authors Journal compilation (c) 2006 the Fisheries Society of the British Isles.
Resumo:
Habitat structure is known to influence the abundance of fishes on temperate reefs. Biotic interactions play a major role in determining the distribution and abundance of species. The significance of these forces in affecting the abundance of fishes may hinge on the presence of organisms that either create or alter habitat. On temperate reefs, for example, macroalgae are considered autogenic ecosystem engineers because they control resource availability to other species through their physical structure and provide much of the structure used by fish. On both coral and temperate reefs, small cryptic reef fishes may comprise up to half of the fish numbers and constitute a diverse community containing many specialized species. Small cryptic fishes (<100 mm total length) may be responsible for the passage of 57% of the energy flow and constitute ca. 35% of the overall reef fish biomass on coral reefs. These benthic fish exploit restricted habitats where food and shelter are obtained in, or in relation to, conditions of substrate complexity and/or restricted living space. A range of mechanisms has been proposed to account for the diversity and the abundance of small fishes: (1) lifehistory strategies that promote short generation times, (2) habitat associations and behaviour that reduce predation and (3) resource partitioning that allows small species to coexist with larger competitors. Despite their abundance and potential importance within reef systems, little is known of the community ecology of cryptic fishes. Specifically on habitat associations many theories suggested a not clear direction on this subject. My research contributes to the development of marine fish ecology by addressing the effects of habitat characteristics upon distribution of cryptobenthic fish assemblages. My focus was on the important shallow, coastal ecosystems that often serve as nursery habitat for many fish and where different type of habitat is likely to both play important roles in organism distribution and survival. My research included three related studies: (1) identification of structuring forces on cryptic fish assemblages, such as physical and biological forcing; (2) macroalgae as potential tools for cryptic fish and identification of different habitat feature that could explain cryptic fish assemblages distribution; (3) canopy formers loss: consequences on cryptic fish and relationship with benthos modifications. I found that: (1) cryptic fish assemblages differ between landward and seaward sides of coastal breakwaters in Adriatic Sea. These differences are explained by 50% of the habitat characteristics on two sides, mainly due to presence of the Codium fragile, sand and oyster assemblages. Microhabitat structure influence cryptic fish assemblages. (2) Different habitat support different cryptic fish assemblages. High heterogeneity on benthic assemblages reflect different fish assemblages. Biogenic components that explain different and diverse cryptic fish assemblages are: anemonia bed, mussel bed, macroalgal stands and Cystoseira barbata, as canopy formers. (3) Canopy forming loss is not relevant in structuring directly cryptic fish assemblages. A removal of canopy forming algae did not affect the structure of cryptic fish assemblages. Canopy formers algae on Conero cliff, does not seem to act as structuring force, probably due to its regressive status. In conclusion, cryptic fish have been shown to have species-specific associations with habitat features relating to the biological and non biological components afforded by fish. Canopy formers algae do not explain cryptic fish assemblages distribution and the results of this study and information from the literature (both from the Mediterranean Sea and elsewhere) show that there are no univocal responses of fish assemblages. Further exanimations on an non regressive status of Cystoseira canopy habitat are needed to define and evaluate the relationship between canopy formers and fish on Mediterranean sea.
Resumo:
We tested the effect of near-future CO2 levels (= 490, 570, 700, and 960 µatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 µatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 µatm CO2 (control). In contrast, juveniles reared at 700 and 960 µatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 µatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 µatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator-prey interactions and commercial fisheries.
Resumo:
At Heron Island reef, Great Barrier Reef Australia, biomass densities and mean wet mass of Ward's damselfish Pomacentrus wardi and the jewelled blenny Salarias fasciatus were not significantly different at 2-37 v. 2-95 g m(-2) and 8-7 v. 7-9 g, respectively. Whereas S. fasciatus significantly exceeded P. wardi in (1) total number of bites per day (3427 v. 1155), (2) the mass of epilithic algal community consumed per bite (2-19 1,. 0-14mg) and (3) total organic carbon consumed per day (487-31 v. 35-46 mg C m(-2) day(-1)). Territorial behaviour differed also between the two species. Pomacentrus wardi chased from their territories a smaller proportion of blennies than roving grazers (i.e. scarids, acanthurids, siganids and pomacentrids) relative to S. fasciatus. Salarias fasciatus chased c. 90% of other blennies from their territories, while chasing only c. 20% of all damsels that entered. Both P. wardi and S. fasciatus rarely chased non-grazers. The chasing behaviour of S. fascialus was size dependent, with resident fish chasing only individuals of its own family (i.e. Blenniidae) that were the same or smaller size. Pomacentrus wardi may have tolerated S. fasciatus grazing within its territory, as it contributes to territory defence from other blennies. The possibility that the interaction between the two species is facilitative, rather than competitive, is discussed. It was concluded that salariine blennies play an important, and previously underestimated role in coral reef trophodynamics. (C) 2004 The Fisheries Society of the British Isles.
Resumo:
A survey of Pacific coral reef fishes for sanguinicolids revealed that two species of Lutjanidae (Lutjanus argentimaculatus, L. bohar), six species of Siganidae (Siganus corallinus, S. fuscescens, S. lineatus, S. margaritiferus, S. punctatus, S. vulpinus), seven species of Chaetodontidae (Chaetodon aureofasciatus, C. citrinellus, C. flavirostris, C. lineolatus, C. reticulatus, C. ulietensis, C. unimaculatus), three species of Scombridae (Euthynnus affinis, Scomberomorus commerson, S. munroi) and three species of Scaridae (Chlorurus microrhinos, Scarus frenatus, S. ghobban) were infected with morphologically similar sanguinicolids. These flukes have a flat elliptical body, a vestigial oral sucker, a single testis, separate genital pores and a post-ovarian uterus. However, these species clearly belong in two genera based on the position of the testis and genital pores. Sanguinicolids from Lutjanidae, Siganidae, Chaetodontidae and Scombridae belong in Cardicola Short, 1953; the testis originates anteriorly to, or at the anterior end of, the intercaecal field and does not extend posteriorly to it, the male genital pore opens laterally to the sinistral lateral nerve chord and the female pore opens near the level of the ootype ( may be anterior, lateral or posterior to it) antero-dextral to the male pore. Those from Scaridae are placed in a new genus, Braya; the testis originates near the posterior end of the intercaecal field and extends posteriorly to it, the male pore opens medially at the posterior end of the body and the female pore opens posterior to the ootype, antero-sinistral to the male pore. The second internal transcribed spacer (ITS2) of ribosomal DNA from these sanguinicolids and a known species, Cardicola forsteri Cribb, Daintith & Munday, 2000, were sequenced, aligned and analysed to test the distinctness of the putative new species. Results from morphological comparisons and molecular analyses suggest the presence of 18 putative species; 11 are described on the basis of combined morphological and molecular data and seven are not because they are characterised solely by molecular sequences or to few morphological specimens (n= one). There was usually a correlation between levels of morphological and genetic distinction in that pairs of species with the greatest genetic separation were also the least morphologically similar. The exception in this regard was the combination of Cardicola tantabiddii n. sp. from S. fuscescens from Ningaloo Reef ( Western Australia) and Cardicola sp. 2 from the same host from Heron Island ( Great Barrier Reef). These two parasite/ host/location combinations had identical ITS2 sequences but appeared to differ morphologically ( however, this could simply be due to a lack of morphological material for Cardicola sp. 2). Only one putative species ( Cardicola sp. 1) was found in more than one location; most host species harboured distinct species in each geographical location surveyed ( for example, S. corallinus from Heron and Lizard Islands) and some ( for example, S. punctatus, S. fuscescens and Chlorurus microrhinos) harboured two species at a single location. Distance analysis of ITS2 showed that nine species from siganids, three from scombrids and five from scarids formed monophyletic clades to the exclusion of sanguinicolids from the other host families. Cardicola milleri n. sp. and C. chaetodontis Yamaguti, 1970 from lutjanids and chaetodontids, respectively, were the only representatives from those families that were sequenced. Within the clade formed by sanguinicolids from Siganidae there wasa further division of species; species from the morphologically similar S. fuscescens and S. margaritiferus formed a monophyletic group to the exclusion of sanguinicolids from all other siganid species.
Resumo:
Coral reefs are among the most productive ecosystems in the world. Yet, with their recent declines due to disease, climate change, and overfishing, restoration of these habitats is one of the main concerns for ecologists, resource managers, and government organizations. Coral reef restoration aims to promote key ecosystem processes to shift these habitats to their historical state of high coral cover, but few studies have focused on effective ways to promote resilience. In addition, little is known about the impact of restoration on the fish communities. The aim of this study is to understand how the community of herbivorous fishes is affected by the density of coral outplants inside a special protection area located in the Florida Keys National Marine Sanctuary. Grazing rates, number of visits and time spent foraging were compared using video footage of sites previously devoid of corals, and six months after coral restorations had occurred. Coral transplantations did not appear to attract herbivores nor increase grazing rates of fishes. Instead Sparisoma and Acanthurus fishes appear to respond to changes in the environment by modifying their grazing behavior. However, there was an observed increase in visits by Acanthurus species after transplantation for all the sites sampled within the reef. These fishes seemed to prefer low coral cover sites for grazing. This study highlights the importance of examining coral restorations impacts at the community level. Understanding how restoration influences herbivores and other guilds of reef fishes will allow individuals to not only determine if these habitats are returning to their “original” state, but provide more information on the ways these systems cope with changes in the environment.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Early life history traits (ELHTs) are key to understand recruitment patterns in marine animals. However, for reef fishes, studies on ELHTs are mainly focused on tropical systems and little is known for temperate reefs. In this study we used SMURFs (Standard Monitoring Units for the Recruitment of Reef Fishes) to collect fish in a temperate rocky reef system (Arrábida Marine Park, Portugal) on a weekly basis for three months during the recruitment period. Six sub-surface SMURFs sampled 2490 Atlantic horse mackerel (Trachurus trachurus) postlarvae and juveniles. Sagittal and lapilli otoliths were extracted from a subsample of 296 fish and ELHTs, such as size and age at settlement, growth rate and age at first secondary growth formation were examined. Additionally, we tested three growth curves and selected the best suited to back-calculate the hatching pattern based on the lengths of all sampled fish. Standard length ranged from 6.13 mm to 48.56 mm and subsampled fish were aged between 19 days to 44 days. Age and size at settlement were estimated between 19 days and 36 days for individuals of 6.13 mm and 24.95 mm, respectively. Otolith shape changed clearly with increasing age and, on average, secondary growth started to form on day 33 (±3 days). Age/length relationship was well described by a Gompertz growth model which was used to back-calculate hatching dates. Four distinct hatching cohorts were identified with fish of the earliest cohort showing a faster body and otolith growth. This study indicates that the nearshore environment might have an important role in the early growth, development and hence recruitment of Atlantic horse mackerel. Information on the early life history of Atlantic horse mackerel is key to understand recruitment processes for this economically and biologically important species.
Resumo:
Many species of stomatopod crustaceans have multiple spectral classes of photoreceptors in their retinas. Behavioral evidence also indicates that stomatopods are capable of discriminating objects by their spectral differences alone, Most animals use only two to four different types of photoreceptors in their color vision systems, typically with broad sensitivity functions, but the stomatopods apparently include eight or more narrowband photoreceptor classes for color recognition. It is also known that stomatopods use several colored body regions in social interactions. To examine why stomatopods may be so 'concerned' with color, we measured the absorption spectra of visual pigments and intrarhabdomal filters, and the reflectance spectra from different parts of the bodies of several individuals of the gonodactyloid stomatopod species, Gonodactylus smithii. We then applied a model of multiple dichromatic channels for color encoding to examine whether the finely tuned color vision was specifically co-evolved with their complex color signals. Although the eye design of stomatopods seems suitable for detecting color signals of their own, the detection of color signals from other animals, such as reef fishes, can be enhanced as well. Color vision in G. smithii is therefore not exclusively adapted to detect its own color signals, but the spectral tuning of some photoreceptors (e.g. midband Rows 2 and 3) enhances the contrast of certain color signals to a large enough degree to make co-evolution between color vision and these rather specific color signals likely. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Individual recognition has been attributed a crucial role in the evolution of complex social systems such as helping behaviour and cooperation. A classical example for interspecific cooperation is the mutualism between the cleaner fish Labroides dimidiatus and its client reef fish species. For stable cooperation to evolve, it is generally assumed that partners interact repeatedly and remember each other's past behaviour. Repeated interactions may be achieved by site fidelity or individual recognition. However, as some cleaner fish have more than 2,300 interactions per day with various individuals per species and various species of clients, basic assumptions of cooperation theory might be violated in this mutualism. We tested the cleaner L. dimidiatus and its herbivorous client, the surgeon fish Ctenochaetus striatus, for their ability to distinguish between a familiar and an unfamiliar partner in a choice experiment. Under natural conditions, cleaners and clients have to build up their relationship, which is probably costly for both. We therefore predicted that both clients and cleaners should prefer the familiar partner in our choice experiment. We found that cleaners spent significantly more time near the familiar than the unfamiliar clients in the first 2 minutes of the experiment. This indicates the ability for individual recognition in cleaners. In contrast, the client C. striatus showed no significant preference. This could be due to a sampling artefact, possibly due to a lack of sufficient motivation. Alternatively, clients may not need to recognise their cleaners but instead remember the defined territories of L. dimidiatus to achieve repeated interactions with the same individual.