605 resultados para Tcr


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generating a diverse T cell memory population through vaccination is a promising strategy to overcome pathogen epitope variability and tolerance to tumor Ags. The effector and memory pool becomes broad in TCR diversity by recruiting high- and low-affinity T cells. We wanted to determine which factors dictate whether a memory T cell pool has a broad versus focused repertoire. We find that inflammation increases the magnitude of low- and high-affinity T cell responses equally well, arguing against a synergistic effect of TCR and inflammatory signals on T cell expansion. We dissect the differential effects of TCR signal strength and inflammation and demonstrate that they control effector T cell survival in a bim-dependent manner. Importantly, bim-dependent cell death is overcome with a high Ag dose in the context of an inflammatory environment. Our data define the framework for the generation of a broad T cell memory pool to inform future vaccine design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytotoxic T cell (CTL) activation by antigen requires the specific detection of peptide-major histocompatibility class I (pMHC) molecules on the target-cell surface by the T cell receptor (TCR). We examined the effect of mutations in the antigen-binding site of a Kb-restricted TCR on T cell activation, antigen binding and dissociation from antigen.These parameters were also examined for variants derived from a Kd-restricted peptide that was recognized by a CTL clone. Using these two independent systems, we show that T cell activation can be impaired by mutations that either decrease or increase the binding half-life of the TCR-pMHC interaction. Our data indicate that efficient T cell activation occurs within an optimal dwell-time range of TCR-pMHC interaction. This restricted dwell-time range is consistent with the exclusion of either extremely low or high affinity T cells from the expanded population during immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ex vivo analysis of virus-specific CD8 T cell populations by anchored PCR has shown that the CD8 TCR repertoire was less oligoclonal (seven to nine clonotypes per individual epitope) than previously thought. In the current study, TCR diversity was investigated by assessing both the overall TCR β-chain variable regions usage as well as the CDR3 regions in ex vivo-isolated CMV- and EBV-specific CD8 T cells from 27 healthy donors. The average number of clonotypes specific to most single viral epitopes comprised between 14 and 77. Changes in the CD8 TCR repertoire were also longitudinally assessed under conditions of HIV-1 chronic infection (i.e., in patients with suppressed virus replication and after treatment interruption and Ag re-exposure). The results showed that a large renewal (≤80%) of the TRB repertoire occurred after Ag re-exposure and was eventually associated with an increased T cell recognition functional avidity. These results demonstrate that the global CD8 TCR repertoire is much more diverse (≤9-fold) than previously estimated and provide the mechanistic basis for supporting massive repertoire renewal during chronic virus infection and Ag re-exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How positive selection molds the T cell repertoire has been difficult to examine. In this study, we use TCR-beta-transgenic mice in which MHC shapes TCR-alpha use. Differential AV segment use is directly related to the constraints placed on the composition of the CDR3 loops. Where these constraints are low, efficient selection of alphabeta pairs follows. This mode of selection preferentially uses favored AV-AJ rearrangements and promotes diversity. Increased constraint on the alpha CDR3 loops leads to inefficient selection associated with uncommon recombination events and limited diversity. Further, the two modes of selection favor alternate sets of AJ segments. We discuss the relevance of these findings to the imprint of self-MHC restriction and peripheral T cell activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During thymus development, immature T cells become committed to two distinct lineages based upon expression of alphabeta or gammadelta TCR. In the alphabeta lineage, developing thymocytes progressively extinguish transcription of the TCRgamma genes by a poorly understood process known as gamma silencing. We show that alphabeta lineage thymocytes in mice lacking a functional pre-TCR undergo limited proliferation and fail to silence TCRgamma genes during development. Stimulation of pre-TCR-deficient immature thymocytes with anti-CD3 Abs does not directly down-regulate TCRgamma transcription but restores TCRgamma silencing following proliferation. Collectively our data reveal an important role for pre-TCR induced proliferation in activating the TCRgamma silencer in alphabeta lineage thymocytes, a process that may reinforce alphabeta or gammadelta lineage commitment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent data showing expression of activating NK receptors (NKR) by conventional T lymphocytes raise the question of their role in the triggering of TCR-independent responses that could be damaging for the host. Transgenic mice expressing the activating receptor Ly49D/DAP12 offer the opportunity to better understand the relevance of ITAM signaling in the biology of T cells. In vitro experiments showed that Ly49D engagement on T lymphocytes by a cognate MHC class I ligand expressed by Chinese hamster ovary (CHO) cells or by specific Ab triggered cellular activation of both CD4 and CD8 populations with modulation of activation markers and cytokine production. The forced expression of the ITAM signaling chain DAP12 is mandatory for Ly49D-transgenic T cell activation. In addition, Ly49D stimulation induced T lymphocyte proliferation, which was much stronger for CD8 T cells. Phenotypic analysis of anti-Ly49D-stimulated CD8 T cells and their ability to produce high levels of IFN-gamma and to kill target cells indicate that Ly49D ligation generates effector cytotoxic CD8 T cells. Ly49D engagement by itself also triggered cytotoxic activity of activated CD8 T cells. Adoptive transfer experiments confirmed that Ly49D-transgenic CD8 T cells are able to control growth of CHO tumor cells or RMA cells transfected with Hm1-C4, the Ly49D ligand normally expressed by CHO. In conclusion, Ly49D engagement on T cells leads to T cell activation and to a full range of TCR-independent effector functions of CD8 T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) expresses a superantigen (SAg) which plays a critical role in the viral life cycle. We have recently described the new infectious MMTV (SIM) encoding a Vbeta4-specific SAg in mice with a TCR-Vbeta(b) haplotype. We have now compared the SAg activity of this virus in BALB/c mice harboring the TCR-Vbeta(a), TCR-Vbeta(b) or TCR-Vbeta(c) haplotypes which differ by a central deletion in the TCR-Vbeta(a) and TCR-Vbeta(c) locus and by mutations in some of the remaining Vbeta elements. Injection of MMTV (SIM) led to a strong stimulation of Vbeta4+ CD4+ T cells in TCR-Vbeta(b) mice, but only to a weak stimulation of these cells in TCR-Vbeta(a) or TCR-Vbeta(c) mice. A large increase in the percentage of Vbeta10+ cells was observed among CD4+ T cells in mice with the Vbeta(a) or Vbeta(c), but not the Vbeta(b) TCR-Vbeta haplotype. Vbeta10+ cells dominated the response when Vbeta10(a/c) and Vbeta4 subsets were present together. This is the first report of a viral SAg interacting with murine Vbeta10+ cells. Six amino acid differences between Vbeta10(a/c) and Vbeta10(b) could account for the gain of reactivity of Vbeta10(a/c) to the MMTV(SIM) SAg. No mutations were found in the hypervariable region 4 (HV4) of the TCR. Mutations at positions 22 and 28 introduce into Vbeta10(a/c) the same amino acids which are found at these positions in the MMTV(SIM)-reactive Vbeta4. Tridimensional models indicated that these amino acids lie close to HV4 and are likely to be important for the interaction of the SAg with the TCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activating and inhibitory NK receptors regulate the development and effector functions of NK cells via their ITAM and ITIM motifs, which recruit protein tyrosine kinases and phosphatases, respectively. In the T cell lineage, inhibitory Ly49 receptors are expressed by a subset of activated T cells and by CD1d-restricted NKT cells, but virtually no expression of activating Ly49 receptors is observed. Using mice transgenic for the activating receptor Ly49D and its associated ITAM signaling DAP12 chain, we show in this article that Ly49D-mediated ITAM signaling in immature thymocytes impairs development due to a block in maturation from the double negative (DN) to double positive (DP) stages. A large proportion of Ly49D/DAP12 transgenic thymocytes were able to bypass the pre-TCR checkpoint at the DN3 stage, leading to the appearance of unusual populations of DN4 and DP cells that lacked expression of intracellular (ic) TCRβ-chain. High levels of CD5 were expressed on ic TCRβ(-) DN and DP thymocytes from Ly49D/DAP12 transgenic mice, further suggesting that Ly49D-mediated ITAM signaling mimics physiological ITAM signaling via the pre-TCR. We also observed unusual ic TCRβ(-) single positive thymocytes with an immature CD24(high) phenotype that were not found in the periphery. Importantly, thymocyte development was completely rescued by expression of an Ly49A transgene in Ly49D/DAP12 transgenic mice, indicating that Ly49A-mediated ITIM signaling can fully counteract ITAM signaling via Ly49D/DAP12. Collectively, our data indicate that inappropriate ITAM signaling by activating NK receptors on immature thymocytes can subvert T cell development by bypassing the pre-TCR checkpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TCRep 3D is an automated systematic approach for TCR-peptide-MHC class I structure prediction, based on homology and ab initio modeling. It has been considerably generalized from former studies to be applicable to large repertoires of TCR. First, the location of the complementary determining regions of the target sequences are automatically identified by a sequence alignment strategy against a database of TCR Vα and Vβ chains. A structure-based alignment ensures automated identification of CDR3 loops. The CDR are then modeled in the environment of the complex, in an ab initio approach based on a simulated annealing protocol. During this step, dihedral restraints are applied to drive the CDR1 and CDR2 loops towards their canonical conformations, described by Al-Lazikani et. al. We developed a new automated algorithm that determines additional restraints to iteratively converge towards TCR conformations making frequent hydrogen bonds with the pMHC. We demonstrated that our approach outperforms popular scoring methods (Anolea, Dope and Modeller) in predicting relevant CDR conformations. Finally, this modeling approach has been successfully applied to experimentally determined sequences of TCR that recognize the NY-ESO-1 cancer testis antigen. This analysis revealed a mechanism of selection of TCR through the presence of a single conserved amino acid in all CDR3β sequences. The important structural modifications predicted in silico and the associated dramatic loss of experimental binding affinity upon mutation of this amino acid show the good correspondence between the predicted structures and their biological activities. To our knowledge, this is the first systematic approach that was developed for large TCR repertoire structural modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cbeta0 alternate cassette exon is located between the Jbeta1 and Cbeta1 genes in the mouse TCR beta-locus. In T cells with a VDJbeta1 rearrangement, the Cbeta0 exon may be included in TCRbeta transcripts (herein called TCRbeta-Cbeta0 transcripts), potentially inserting an additional 24 aa between the V and C domains of the TCR beta-chain. These TCRbeta splice isoforms may be differentially regulated after Ag activation, because we detected TCRbeta-Cbeta0 transcripts in a high proportion (>60%) of immature and mature T cells having VDJbeta1 rearrangements but found a substantially reduced frequency (<35%) of TCRbeta-Cbeta0 expression among CD8 T cells selected by Ag in vivo. To study the potential activity of the TCRbeta-Cbeta0 splice variant, we cloned full-length TCR cDNAs by single-cell RT-PCR into retroviral expression vectors. We found that the TCRbeta-Cbeta0 splice isoform can function during an early stage of T cell development normally dependent on TCR beta-chain expression. We also demonstrate that T hybridoma-derived cells expressing a TCRbeta-Cbeta0 isoform together with the clonally associated TCR alpha-chain recognize the same cognate peptide-MHC ligand as the corresponding normal alphabetaTCR. This maintenance of receptor function and specificity upon insertion of the Cbeta0 peptide cassette signifies a remarkable adaptability for the TCR beta-chain, and our findings open the possibility that this splice isoform may function in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide Ags presented by class I MHC molecules on human melanomas and that are recognized by CD8(+) T cells are the subjects of many studies of antitumor immunity and represent attractive candidates for therapeutic approaches. However, no direct quantitative measurements exist to reveal their expression hierarchy on the cell surface. Using novel recombinant Abs which bind these Ags with a peptide-specific, MHC-restricted manner, we demonstrate a defined pattern of expression hierarchy of peptide-HLA-A2 complexes derived from three major differentiation Ags: gp100, Melan-A/Mart-1, and tyrosinase. Studying melanoma cell lines derived from multiple patients, we reveal a surprisingly high level of presentation of tyrosinase-derived complexes and moderate to very low expression of complexes derived from other Ags. No correlation between Ag presentation and mRNA expression was found; however, protein stability may play a major role. These results provide new insights into the characteristics of Ag presentation and are particularly important when such targets are being considered for immunotherapy. These results may shed new light on relationships between Ag presentation and immune response to cancer Ags.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bcl10 plays an essential role in the adaptive immune response, because Bcl10-deficient lymphocytes show impaired Ag receptor-induced NF-kappaB activation and cytokine production. Bcl10 is a phosphoprotein, but the physiological relevance of this posttranslational modification remains poorly defined. In this study, we report that Bcl10 is rapidly phosphorylated upon activation of human T cells by PMA/ionomycin- or anti-CD3 treatment, and identify Ser(138) as a key residue necessary for Bcl10 phosphorylation. We also show that a phosphorylation-deficient Ser(138)/Ala mutant specifically inhibits TCR-induced actin polymerization yet does not affect NF-kappaB activation. Moreover, silencing of Bcl10, but not of caspase recruitment domain-containing MAGUK protein-1 (Carma1) induces a clear defect in TCR-induced F-actin formation, cell spreading, and conjugate formation. Remarkably, Bcl10 silencing also impairs FcgammaR-induced actin polymerization and phagocytosis in human monocytes. These results point to a key role of Bcl10 in F-actin-dependent immune responses of T cells and monocytes/macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T-cell negative selection, a process by which intrathymic immunological tolerance is induced, involves the apoptosis-mediated clonal deletion of potentially autoreactive T cells. Although different experimental approaches suggest that this process is triggered as the result of activation-mediated cell death, the signal transduction pathways underlying this process is not fully understood. In the present report we have used an in vitro system to analyze the cell activation and proliferation requirements for the deletion of viral superantigen (SAg)-reactive Vbeta8.1 T-cell receptor (TCR) transgenic (TG) thymocytes. Our results indicate that in vitro negative selection of viral SAg-reactive CD4+ CD8+ thymocytes is dependent on thymocyte activation but does not require the proliferation of the negatively signaled thymocytes.