990 resultados para Task Constraints
Resumo:
This study implemented linear and nonlinear methods of measuring variability to determine differences in stability of two groups of skilled (n = 10) and unskilled (n = 10) participants performing 3m forward/backward shuttle agility drill. We also determined whether stability measures differed between the forward and backward segments of the drill. Finally, we sought to investigate whether local dynamic stability, measured using largest finite-time Lyapunov exponents, changed from distal to proximal lower extremity segments. Three-dimensional coordinates of five lower extremity markers data were recorded. Results revealed that the Lyapunov exponents were lower (P < 0.05) for skilled participants at all joint markers indicative of higher levels of local dynamic stability. Additionally, stability of motion did not differ between forward and backward segments of the drill (P > 0.05), signifying that almost the same control strategy was used in forward and backward directions by all participants, regardless of skill level. Furthermore, local dynamic stability increased from distal to proximal joints (P < 0.05) indicating that stability of proximal segments are prioritized by the neuromuscular control system. Finally, skilled participants displayed greater foot placement standard deviation values (P < 0.05), indicative of adaptation to task constraints. The results of this study provide new methods for sport scientists, coaches to characterize stability in agility drill performance.
Resumo:
Research on 1vs1 sub-phases in team sports has shown how one player coordinates his/her actions with his/her opponent and the location of a target/goal to attain performance objectives. In this study, we extended this approach to analysis of 5vs5 competitive performance in the team sport of futsal to provide a performance analysis framework that explains how players coordinate their actions to create/prevent opportunities to score goals. For this purpose, we recorded all 10 futsal matches of the 2009 Lusophony Games held in Lisbon. We analysed the displacement trajectories of a shooting attacker and marking defender in plays ending in a goal, a goalkeeper's save, and a defender's interception, at four specific moments during performance: (1) assisting attacker's ball reception; (2) moment of passing; (3) shooter's ball reception, and; (4) shot on goal. Statistical analysis showed that when a goal was scored, the defender's angle to the goal and to the attacker tended to decrease, the attacker was able to move to the same distance to the goal alongside the defender, and the attacker was closer to the defender and moving at the same velocity (at least) as the defender. This study identified emergent patterns of coordination between attackers and defenders under key competitive task constraints, such as the location of the goal, which supported successful performance in futsal.
Resumo:
We investigated adult age differences in dual-task costs in cognitive-sensorimotor settings without concurrent response production and with individually adjusted resource demands for the cognitive task. Twenty-four young adults (M=25.42 years, SD=3.55) and 23 older adults (M=68 years, SD=4.46) performed a cognitive task and two postural control tasks (standing on a stable and moving platform) both separately (single-task context) and concurrently (dual-task context). The cognitive task did not require response production during posture data collection and its difficulty was individually adjusted to 80% correct performance under single-task conditions. Results showed pronounced age differences in postural control in the moving platform condition, which increased further under dual-task conditions. Our findings support the assumption of increased cognitive resource demands for postural control in older adults. They extend existing work by taking two shortcomings of previous studies into account. We discuss cognitive and posture task constraints in this and previous studies as factors determining multi-tasking and its changes in later adulthood.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We tested the predictions of Attentional Control Theory (ACT) by examining how anxiety affects visual search strategies, performance efficiency, and performance effectiveness using a dynamic, temporal-constrained anticipation task. Higher and lower skilled players viewed soccer situations under 2 task constraints (near vs. far situation) and were tested under high (HA) and low (LA) anxiety conditions. Response accuracy (effectiveness) and response time, perceived mental effort, and eye-movements (all efficiency) were recorded. A significant increase in anxiety was evidenced by higher state anxiety ratings on the MRF-L scale. Increased anxiety led to decreased performance efficiency because response times and mental effort increased for both skill groups whereas response accuracy did not differ. Anxiety influenced search strategies, with higher skilled players showing a decrease in number of fixation locations for far situations under HA compared with LA condition when compared with lower skilled players. Findings provide support for ACT with anxiety impairing processing efficiency and, potentially, top-down attentional control across different task constraints.
Resumo:
This thesis explores the processes of team innovation. It utilises two studies, an organisationally based pilot and an experimental study, to examine and identify aspects of teams' behaviours that are important for successful innovative outcome. The pilot study, based in two automotive manufacturers, involved the collection of team members' experiences through semi-structured interviews, and identified a number of factors that affected teams' innovative performance. These included: the application of ideative & dissemination processes; the importance of good team relationships, especially those of a more informal nature, in facilitating information and ideative processes; the role of external linkages in enhancing quality and radicality of innovations; and the potential attenuation of innovative ideas by time deadlines. This study revealed a number key team behaviours that may be important in successful innovation outcomes. These included; goal setting, idea generation and development, external contact, task and personal information exchange, leadership, positive feedback and resource deployment. These behaviours formed the basis of a coding system used in the second part of the research. Building on the results from the field based research, an experimental study was undertaken to examine the behavioural differences between three groups of sixteen teams undertaking innovative an task to produce an anti-drugs poster. They were randomly assigned to one of three innovation category conditions suggested by King and Anderson (1990), emergent, imported and imposed. These conditions determined the teams level of access to additional information on previously successful campaigns and the degree of freedom they had with regarding to the design of the poster. In addition, a further experimental condition was imposed on half of the teams per category which involved a formal time deadline for task completion. The teams were video taped for the duration of their innovation and their behaviours analysed and coded in five main aspects including; ideation, external focus, goal setting, interpersonal, directive and resource related activities. A panel of experts, utilising five scales developed from West and Anderson's (1996) innovation outcome measures, assessed the teams' outputs. ANOVAs and repeated measure ANOVAs were deployed to identify whether there were significant differences between the different conditions. The results indicated that there were some behavioural differences between the categories and that over the duration of the task behavioural changes were identified. The results, however, revealed a complex picture and suggested limited support for three distinctive innovation categories. There were many differences in behaviours, but rarely between more than two of the categories. A main finding was the impact that different levels of constraint had in changing teams' focus of attention. For example, emergent teams were found to use both their own team and external resources, whilst those who could import information about other successful campaigns were likely to concentrate outside the team and pay limited attention to the internal resources available within the team. In contrast, those operating under task constraints with aspects of the task imposed onto them were more likely to attend to internal team resources and pay limited attention to the external world. As indicated by the earlier field study, time deadlines did significantly change teams' behaviour, reducing ideative and information exchange behaviours. The model shows an important behavioural progression related to innovate teams. This progression involved the teams' openness initially to external sources, and then to the intra-team environment. Premature closure on the final idea before their mid-point was found to have a detrimental impact on team's innovation. Ideative behaviour per se was not significant for innovation outcome, instead the development of intra-team support and trust emerged as crucial. Analysis of variance revealed some limited differentiation between the behaviours of teams operating under the aforementioned three innovation categories. There were also distinct detrimental differences in the behaviour of those operating under a time deadline. Overall, the study identified the complex interrelationships of team behaviours and outcomes, and between teams and their context.
Resumo:
The objectives of this study were to determine the impact of different instructional constraints on standing board jump (sbj) performance in children and understand the underlying changes in emergent movement patterns. Two groups of novice participants were provided with either externally or internally focused attentional instructions during an intervention phase. Pre- and post-test sessions were undertaken to determine changes to performance and movement patterns. Thirty-six primary fourth-grade male students were recruited for this study and randomly assigned to either an external, internal focus or control group. Different instructional constraints with either an external focus (image of the achievement) or an internal focus (image of the act) were provided to the participants. Performance scores (jump distances), and data from key kinematic (joint range of motion, ROM) and kinetic variables (jump impulses) were collected. Instructional constraints with an emphasis on an external focus of attention were generally more effective in assisting learners to improve jump distances. Intra-individual analyses highlighted how enhanced jump distances for successful participants may be concomitant with specific changes to kinematic and kinetic variables. Larger joint ROM and adjustment to a comparatively larger horizontal impulse to a vertical impulse were observed for more successful participants at post-test performance. From a constraints-led perspective, the inclusion of instructional constraints encouraging self-adjustments in the control of movements (i.e., image of achievement) had a beneficial effect on individuals performing the standing broad jump task. However, the advantage of using an external focus of attentional instructions could be task- and individual-specific.
Resumo:
In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In preliminary experiments the performance of the resulting system is demonstrated with different real floorplans.
Resumo:
The organisation of the human neuromuscular-skeletal system allows an extremely wide variety of actions to be performed, often with great dexterity. Adaptations associated with skill acquisition occur at all levels of the neuromuscular-skeletal system although all neural adaptations are inevitably constrained by the organisation of the actuating apparatus (muscles and bones). We quantified the extent to which skill acquisition in an isometric task set is influenced by the mechanical properties of the muscles used to produce the required actions. Initial performance was greatly dependent upon the specific combination of torques required in each variant of the experimental task. Five consecutive days of practice improved the performance to a similar degree across eight actions despite differences in the torques required about the elbow and forearm. The proportional improvement in performance was also similar when the actions were performed at either 20 or 40% of participants' maximum voluntary torque capacity. The skill acquired during practice was successfully extrapolated to variants of the task requiring more torque than that required during practice. We conclude that while the extent to which skill can be acquired in isometric actions is independent of the specific combination of joint torques required for target acquisition, the nature of the kinetic adaptations leading to the performance improvement in isometric actions is influenced by the neural and mechanical properties of the actuating muscles.
Resumo:
In the present work, the effects of spatial constraints on the efficiency of task execution in systems underlain by geographical complex networks are investigated, where the probability of connection decreases with the distance between the nodes. The investigation considers several configurations of the parameters defining the network connectivity, and the Barabasi-Albert network model is also considered for comparisons. The results show that the effect of connectivity is significant only for shorter tasks, the locality of connection simplied by the spatial constraints reduces efficiency, and the addition of edges can improve the efficiency of the execution, although with increasing locality of the connections the improvement is small.
Resumo:
On spine: Task Force report - water resources.
Resumo:
The organisation of the human neuromuscular-skeletal system allows an extremely wide variety of actions to be performed, often with great dexterity. Adaptations associated with skill acquisition occur at all levels of the neuromuscular-skeletal system although all neural adaptations are inevitably constrained by the organisation of the actuating apparatus (muscles and bones). We quantified the extent to which skill acquisition in an isometric task set is influenced by the mechanical properties of the muscles used to produce the required actions. Initial performance was greatly dependent upon the specific combination of torques required in each variant of the experimental task. Five consecutive days of practice improved the performance to a similar degree across eight actions despite differences in the torques required about the elbow and forearm. The proportional improvement in performance was also similar when the actions were performed at either 20 or 40% of participants' maximum voluntary torque capacity. The skill acquired during practice was successfully extrapolated to variants of the task requiring more torque than that required during practice. We conclude that while the extent to which skill can be acquired in isometric actions is independent of the specific combination of joint torques required for target acquisition, the nature of the kinetic adaptations leading to the performance improvement in isometric actions is influenced by the neural and mechanical properties of the actuating muscles.