997 resultados para Sustainable Harvesting


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Euterpe edulis is an endangered species due to palm heart overharvesting, the most important non-timber forest product of the Brazilian Atlantic Forest, and fruit exploitation has been introduced as a low impacting alternative. However, E. edulis is a keystone species for frugivores birds, and even the impact of fruit exploitation needs to be better investigated. Since this species occurs over contrasting habitats, the establishment of site-specific standards and limits for exploitation may also be essential to achieve truly sustainable management. In this context, we sought to investigate how soil chemical composition would potentially affect E. edulis (Arecaceae) palm heart and fruit exploitation considering current standards of management. We studied natural populations found in Restinga Forest and Atlantic Rainforest remnants established within Natural Reserves of Sao Paulo State, SE Brazil, where 10.24 ha permanent plots, composed of a grid of 256 subplots (20 m x 20 m), were located. In each of these subplots, we evaluated soil chemical composition and diameter at breast height of E. edulis individuals. Additionally, we evaluated fruit yield in 2008 and 2009 in 20 individuals per year. The Atlantic Rainforest population had a much higher proportion of larger diameter individuals than the population from the Restinga Forest, as a result of habitat-mediated effects, especially those related to soil. Sodium and potassium concentration in Restinga Forest soils, which have strong negative and positive effect on palm growth, respectively, played a key role in determining those differences. Overall, the number of fruits that could be exploited in the Atlantic Rainforest was four times higher than in Restinga Forest. If current rules for palm heart and fruit harvesting were followed without any restriction to different habitats, Restinga Forest populations are under severe threat, as this study shows that they are not suitable for sustainable management of both fruits and palm heart. Hence, a habitat-specific approach of sustainable management is needed for this species in order to respect the demographic and ecological dynamics of each population to be managed. These findings suggest that any effort to create general management standards of low impacting harvesting may be unsuccessful if the species of interest occur over a wide range of ecosystems. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemistry can contribute, in many different ways to solve the challenges we are facing to modify our inefficient and fossil-fuel based energy system. The present work was motivated by the search for efficient photoactive materials to be employed in the context of the energy problem: materials to be utilized in energy efficient devices and in the production of renewable electricity and fuels. We presented a new class of copper complexes, that could find application in lighting techhnologies, by serving as luminescent materials in LEC, OLED, WOLED devices. These technologies may provide substantial energy savings in the lighting sector. Moreover, recently, copper complexes have been used as light harvesting compounds in dye sensitized photoelectrochemical solar cells, which offer a viable alternative to silicon-based photovoltaic technologies. We presented also a few supramolecular systems containing fullerene, e.g. dendrimers, dyads and triads.The most complex among these arrays, which contain porphyrin moieties, are presented in the final chapter. They undergo photoinduced energy- and electron transfer processes also with long-lived charge separated states, i.e. the fundamental processes to power artificial photosynthetic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managing land sustainably is a huge challenge, especially under harsh climatic conditions such as those found in drylands. The socio-economic situation can also pose challenges, as dryland regions are often characterized by remoteness, marginality, low-productive farming, weak institutions, and even conflict. With threats from climate change, disputes over water, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) measures will only increase in the future. Within the EU-funded DESIRE project, researchers and stakeholders jointly identified existing SLM technologies and approaches in 17 dryland study sites located in the Mediterranean and around the world. In order to evaluate and share this valuable SLM experience, local researchers documented the SLM technologies and approaches in collaboration with land users, utilizing the internationally recognized WOCAT questionnaires. This article provides an analysis of 30 technologies and 8 approaches, enabling an initial evaluation of how SLM addresses prevalent dryland threats, such as water scarcity, soil degradation, vegetation degradation and low production, climate change, resource use conflicts, and migration. Among the impacts attributed to the documented technologies, those mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Favorable local-scale cost–benefit relationships were mainly found when considered over the long term. Nevertheless, SLM was found to improve people’s livelihoods and prevent further outmigration. More field research is needed to reinforce expert assessments of SLM impacts and provide the necessary evidence-based rationale for investing in SLM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensuring sustainable use of natural resources is crucial for maintaining the basis for our livelihoods. With threats from climate change, disputes over water, biodiversity loss, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) practices will only increase in the future. For years already, various national and international organizations (GOs, NGOs, donors, research institutes, etc.) have been working on alternative forms of land management. And numerous land users worldwide – especially small farmers – have been testing, adapting, and refining new and better ways of managing land. All too often, however, the resulting SLM knowledge has not been sufficiently evaluated, documented and shared. Among other things, this has often prevented valuable SLM knowledge from being channelled into evidence-based decision-making processes. Indeed, proper knowledge management is crucial for SLM to reach its full potential. Since more than 20 years, the international WOCAT network documents and promotes SLM through its global platform. As a whole, the WOCAT methodology comprises tools for documenting, evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing, analysis and use for decision support in the field, at the planning level, and in scaling up identified good practices. In early 2014, WOCAT’s growth and ongoing improvement culminated in its being officially recognized by the UNCCD as the primary recommended database for SLM best practices. Over the years, the WOCAT network confirmed that SLM helps to prevent desertification, to increase biodiversity, enhance food security and to make people less vulnerable to the effects of climate variability and change. In addi- tion, it plays an important role in mitigating climate change through improving soil organic matter and increasing vegetation cover. In-depth assessments of SLM practices from desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats. The impacts mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Among others, favourable local-scale cost-benefit relationships of SLM practices play a crucial role in their adoption. An economic analysis from the WOCAT database showed that land users perceive a large majority of the technologies as having benefits that outweigh costs in the long term. The high investment costs associated with some practices may constitute a barrier to adoption, however, where appropriate, short-term support for land users can help to promote these practices. The increased global concerns on climate change, disaster risks and food security redirect attention to, and trigger more funds for SLM. To provide the necessary evidence-based rationale for investing in SLM and to reinforce expert and land users assessments of SLM impacts, more field research using inter- and transdisciplinary approaches is needed. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the EU FP7 projects CASCADE and RECARE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general, a major challenge for the exploitation of renewable energies is to improve their efficiency. In electricity generation from the energy of ocean waves, not unlike other technologies, the converter must be optimized to make the energy harvesting economically feasible. This paper proposes a passive tuning control strategy of a point absorber in which the power captured is maximized by controlling the electromagnetic force of the generator with a resistance emulation approach. The proposed strategy consists of mapping the optimal values for regular waves and applying them to irregular waves. This strategy is tested in a wave energy converter in which the generator is connected to a boost rectifier converter whose controller is designed to emulate a resistance. The power electronics system implemented is validated by comparing its performance with the case in which the generator is directly connected to a resistive load. The simulation results show the effectiveness of the proposed strategy as the maximum captured power is concentrated around the optimal values previously calculated and with the same behavior for both excitations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hydrological–economic model is introduced to describe the dynamics of groundwater-dependent economics (agriculture and tourism) for sustainable use in sparse-data drylands. The Amtoudi Oasis, a remote area in southern Morocco, in the northern Sahara attractive for tourism and with evidence of groundwater degradation, was chosen to show the model operation. Governing system variables were identified and put into action through System Dynamics (SD) modeling causal diagrams to program basic formulations into a model having two modules coupled by the nexus ‘pumping’: (1) the hydrological module represents the net groundwater balance (G) dynamics; and (2) the economic module reproduces the variation in the consumers of water, both the population and tourists. The model was operated under similar influx of tourists and different scenarios of water availability, such as the wet 2009–2010 and the average 2010–2011 hydrological years. The rise in international tourism is identified as the main driving force reducing emigration and introducing new social habits in the population, in particular concerning water consumption. Urban water allotment (PU) was doubled for less than a 100-inhabitant net increase in recent decades. The water allocation for agriculture (PI), the largest consumer of water, had remained constant for decades. Despite that the 2-year monitoring period is not long enough to draw long-term conclusions, groundwater imbalance was reflected by net aquifer recharge (R) less than PI + PU (G < 0) in the average year 2010–2011, with net lateral inflow from adjacent Cambrian formations being the largest recharge component. R is expected to be much less than PI + PU in recurrent dry spells. Some low-technology actions are tentatively proposed to mitigate groundwater degradation, such as: wastewater capture, treatment, and reuse for irrigation; storm-water harvesting for irrigation; and active maintenance of the irrigation system to improve its efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The harvest and trade of corals and other benthic organisms from the world’s shallow tropical reefs is a lucrative industry that can have positive socioeconomic benefits for communities while supplying the increasing demand specimens for aquaria and curios. For most countries, this trade has historically been almost entirely unregulated. More recently, in response to concerns about the rapid decline of some reefs in the face of anthropogenic and natural pressures, as well as indications of depletions and even localized extinctions of some species caused by harvesting, there have been attempts to improve the sustainability of the industry. Both developing and developed countries face different impediments to this reform, the most pressing and common of which is the lack of reliable data on world trade through CITES. Thereafter, differences in the processes through which reform can be implemented are based principally on the length of the supply chain from collection to export, the degree of industry stewardship, and resourcing. The coral collection fishery in Queensland, Australia, provides an example where continual improvements in reporting and risk assessments and adopting a comanagement approach are delivering better adaptive management of the resource, although the on-ground sustainability benefits of this approach are still to be tested. A simpler approach to sustainable use of coral is to favor the replacement of wild harvested specimens with those bred or grown entirely in an aquaculture facility (as opposed to merely collected and then grown out in culture). Yet there are major impediments to this change, including the dependence of many public aquaria on the same sources as the hobbyist community, difficulties of culturing some species in captivity, and infrastructure costs. Nevertheless, this approach will likely play an important part in reef conservation efforts in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing the application of technologies for harvesting waste heat could make a significant contribution to sustainable energy production. Thermoelectrochemical cells are one such emerging technology, where the thermal response of a redox couple in an electrolyte is used to generate a potential difference across a cell when a temperature gradient exists. The unique physical properties of ionic liquids make them ideal for application as electrolytes in these devices. One of the keys to utilizing these media in efficient thermoelectrochemical cells is achieving high Seebeck coefficients, Se: the thermodynamic quantity that determines the magnitude of the voltage achieved per unit temperature difference. Here, we report the Se and cell performance of a cobalt-based redox couple in a range of different ionic liquids, to investigate the influence of the nature of the IL on the thermodynamics and cell performance of the redox system. The results reported include the highest Se to-date for an IL-based electrolyte. The effect of diluting the different ILs with propylene carbonate is also reported, which results in a significant increase in the output powers and current densities of the device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper describes a forest management system to be applied on smallholder farms, particularly on settlement projects in the Brazilian Amazon. The proposed forest management system was designed to generate a new source of family income and to maintain forest structure and biodiversity. The system is new in three main characteristics: the use of short cycles in the management of tropical forests, the low harvesting intensity and environmental impact, and the direct involvement of the local population in ali forest management activities. It is based on a minimum felling cycle of ten years and an annual timber harvest of 5-10 m3 ha-1.