969 resultados para Supervised learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relevance feedback approaches have been established as an important tool for interactive search, enabling users to express their needs. However, in view of the growth of multimedia collections available, the user efforts required by these methods tend to increase as well, demanding approaches for reducing the need of user interactions. In this context, this paper proposes a semi-supervised learning algorithm for relevance feedback to be used in image retrieval tasks. The proposed semi-supervised algorithm aims at using both supervised and unsupervised approaches simultaneously. While a supervised step is performed using the information collected from the user feedback, an unsupervised step exploits the intrinsic dataset structure, which is represented in terms of ranked lists of images. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors and different datasets. The proposed approach was also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate the effectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-supervised learning techniques have gained increasing attention in the machine learning community, as a result of two main factors: (1) the available data is exponentially increasing; (2) the task of data labeling is cumbersome and expensive, involving human experts in the process. In this paper, we propose a network-based semi-supervised learning method inspired by the modularity greedy algorithm, which was originally applied for unsupervised learning. Changes have been made in the process of modularity maximization in a way to adapt the model to propagate labels throughout the network. Furthermore, a network reduction technique is introduced, as well as an extensive analysis of its impact on the network. Computer simulations are performed for artificial and real-world databases, providing a numerical quantitative basis for the performance of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Training a system to recognize handwritten words is a task that requires a large amount of data with their correct transcription. However, the creation of such a training set, including the generation of the ground truth, is tedious and costly. One way of reducing the high cost of labeled training data acquisition is to exploit unlabeled data, which can be gathered easily. Making use of both labeled and unlabeled data is known as semi-supervised learning. One of the most general versions of semi-supervised learning is self-training, where a recognizer iteratively retrains itself on its own output on new, unlabeled data. In this paper we propose to apply semi-supervised learning, and in particular self-training, to the problem of cursive, handwritten word recognition. The special focus of the paper is on retraining rules that define what data are actually being used in the retraining phase. In a series of experiments it is shown that the performance of a neural network based recognizer can be significantly improved through the use of unlabeled data and self-training if appropriate retraining rules are applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facial nerve segmentation plays an important role in surgical planning of cochlear implantation. Clinically available CBCT images are used for surgical planning. However, its relatively low resolution renders the identification of the facial nerve difficult. In this work, we present a supervised learning approach to enhance facial nerve image information from CBCT. A supervised learning approach based on multi-output random forest was employed to learn the mapping between CBCT and micro-CT images. Evaluation was performed qualitatively and quantitatively by using the predicted image as input for a previously published dedicated facial nerve segmentation, and cochlear implantation surgical planning software, OtoPlan. Results show the potential of the proposed approach to improve facial nerve image quality as imaged by CBCT and to leverage its segmentation using OtoPlan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that builds on a novel set of pose invariant feature descriptors. The statistical relationship between trabecular bone anisotropy and feature descriptors were learned from a database of pairs of high resolution QCT and clinical QCT reconstructions. On a set of leave-one-out experiments, we compared the accuracy of the proposed approach to previous ones, and report a mean prediction error of 6% for the tensor norm, 6% for the degree of anisotropy and 19◦ for the principal tensor direction. These findings show the potential of the proposed approach to predict trabecular bone anisotropy from clinically available QCT images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An interactive hierarchical Generative Topographic Mapping (HGTM) ¸iteHGTM has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: bf (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in ¸iteKabanpami. bf (2) We give the user a choice of initializing the child plots of the current plot in either em interactive, or em automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in ¸iteHGTM, whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTMs is employed. bf (3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural language understanding is to specify a computational model that maps sentences to their semantic mean representation. In this paper, we propose a novel framework to train the statistical models without using expensive fully annotated data. In particular, the input of our framework is a set of sentences labeled with abstract semantic annotations. These annotations encode the underlying embedded semantic structural relations without explicit word/semantic tag alignment. The proposed framework can automatically induce derivation rules that map sentences to their semantic meaning representations. The learning framework is applied on two statistical models, the conditional random fields (CRFs) and the hidden Markov support vector machines (HM-SVMs). Our experimental results on the DARPA communicator data show that both CRFs and HM-SVMs outperform the baseline approach, previously proposed hidden vector state (HVS) model which is also trained on abstract semantic annotations. In addition, the proposed framework shows superior performance than two other baseline approaches, a hybrid framework combining HVS and HM-SVMs and discriminative training of HVS, with a relative error reduction rate of about 25% and 15% being achieved in F-measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Learning in neural networks can broadly be divided into two categories, viz., off-line (or batch) learning and online (or incremental) learning. In this paper, a review of a variety of supervised neural networks with online learning capabilities is presented. Specifically, we focus on articles published in main indexed journals in the past 10 years (2003–2013). We examine a number of key neural network architectures, which include feedforward neural networks, recurrent neural networks, fuzzy neural networks, and other related networks. How the online learning methodologies are incorporated into these networks is exemplified, and how they are applied to solving problems in different domains is highlighted. A summary of the review that covers different network architectures and their applications is presented.