962 resultados para Subgingival calculus
Resumo:
National Natural Science Foundation of China [40771205]; National Science Fund for Distinguished Young Scholars [40625002]; Chinese Academy of Sciences [KZCX2-YW-315]
Resumo:
A program was written to solve calculus word problems. The program, CARPS (CALculus Rate Problem Solver), is restricted to rate problems. The overall plan of the program is similar to Bobrow's STUDENT, the primary difference being the introduction of "structures" as the internal model in CARPS. Structures are stored internally as trees. Each structure is designed to hold the information gathered about one object. A description of CARPS is given by working through two problems, one in great detail. Also included is a critical analysis of STUDENT.
Resumo:
Gough, John, 'Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem', Journal of Mathematical Physics. 47, 113509, (2006)
Resumo:
We consider the problems of typability[1] and type checking[2] in the Girard/Reynolds second-order polymorphic typed λ-calculus, for which we use the short name "System F" and which we use in the "Curry style" where types are assigned to pure λ -terms. These problems have been considered and proven to be decidable or undecidable for various restrictions and extensions of System F and other related systems, and lower-bound complexity results for System F have been achieved, but they have remained "embarrassing open problems"[3] for System F itself. We first prove that type checking in System F is undecidable by a reduction from semi-unification. We then prove typability in System F is undecidable by a reduction from type checking. Since the reverse reduction is already known, this implies the two problems are equivalent. The second reduction uses a novel method of constructing λ-terms such that in all type derivations, specific bound variables must always be assigned a specific type. Using this technique, we can require that specific subterms must be typable using a specific, fixed type assignment in order for the entire term to be typable at all. Any desired type assignment may be simulated. We develop this method, which we call "constants for free", for both the λK and λI calculi.
Resumo:
We study the problem of type inference for a family of polymorphic type disciplines containing the power of Core-ML. This family comprises all levels of the stratification of the second-order lambda-calculus by "rank" of types. We show that typability is an undecidable problem at every rank k ≥ 3 of this stratification. While it was already known that typability is decidable at rank ≤ 2, no direct and easy-to-implement algorithm was available. To design such an algorithm, we develop a new notion of reduction and show how to use it to reduce the problem of typability at rank 2 to the problem of acyclic semi-unification. A by-product of our analysis is the publication of a simple solution procedure for acyclic semi-unification.
Resumo:
If every lambda-abstraction in a lambda-term M binds at most one variable occurrence, then M is said to be "linear". Many questions about linear lambda-terms are relatively easy to answer, e.g. they all are beta-strongly normalizing and all are simply-typable. We extend the syntax of the standard lambda-calculus L to a non-standard lambda-calculus L^ satisfying a linearity condition generalizing the notion in the standard case. Specifically, in L^ a subterm Q of a term M can be applied to several subterms R1,...,Rk in parallel, which we write as (Q. R1 \wedge ... \wedge Rk). The appropriate notion of beta-reduction beta^ for the calculus L^ is such that, if Q is the lambda-abstraction (\lambda x.P) with m\geq 0 bound occurrences of x, the reduction can be carried out provided k = max(m,1). Every M in L^ is thus beta^-SN. We relate standard beta-reduction and non-standard beta^-reduction in several different ways, and draw several consequences, e.g. a new simple proof for the fact that a standard term M is beta-SN iff M can be assigned a so-called "intersection" type ("top" type disallowed).
Resumo:
Weak references are references that do not prevent the object they point to from being garbage collected. Most realistic languages, including Java, SML/NJ, and OCaml to name a few, have some facility for programming with weak references. Weak references are used in implementing idioms like memoizing functions and hash-consing in order to avoid potential memory leaks. However, the semantics of weak references in many languages are not clearly specified. Without a formal semantics for weak references it becomes impossible to prove the correctness of implementations making use of this feature. Previous work by Hallett and Kfoury extends λgc, a language for modeling garbage collection, to λweak, a similar language with weak references. Using this previously formalized semantics for weak references, we consider two issues related to well-behavedness of programs. Firstly, we provide a new, simpler proof of the well-behavedness of the syntactically restricted fragment of λweak defined previously. Secondly, we give a natural semantic criterion for well-behavedness much broader than the syntactic restriction, which is useful as principle for programming with weak references. Furthermore we extend the result, proved in previously of λgc, which allows one to use type-inference to collect some reachable objects that are never used. We prove that this result holds of our language, and we extend this result to allow the collection of weakly-referenced reachable garbage without incurring the computational overhead sometimes associated with collecting weak bindings (e.g. the need to recompute a memoized function). Lastly we use extend the semantic framework to model the key/value weak references found in Haskell and we prove the Haskell is semantics equivalent to a simpler semantics due to the lack of side-effects in our language.
Resumo:
Lennart Åqvist (1992) proposed a logical theory of legal evidence, based on the Bolding-Ekelöf of degrees of evidential strength. This paper reformulates Åqvist's model in terms of the probabilistic version of the kappa calculus. Proving its acceptability in the legal context is beyond the present scope, but the epistemological debate about Bayesian Law isclearly relevant. While the present model is a possible link to that lineof inquiry, we offer some considerations about the broader picture of thepotential of AI & Law in the evidentiary context. Whereas probabilisticreasoning is well-researched in AI, calculations about the threshold ofpersuasion in litigation, whatever their value, are just the tip of theiceberg. The bulk of the modeling desiderata is arguably elsewhere, if one isto ideally make the most of AI's distinctive contribution as envisaged forlegal evidence research.
Resumo:
A class of generalized Lévy Laplacians which contain as a special case the ordinary Lévy Laplacian are considered. Topics such as limit average of the second order functional derivative with respect to a certain equally dense (uniformly bounded) orthonormal base, the relations with Kuo’s Fourier transform and other infinite dimensional Laplacians are studied.
Resumo:
Review of a semi-staged performance of Calculus by Carl Djerassi at the Royal Institution, London on 30 September 2002.
Resumo:
Incidence calculus is a mechanism for probabilistic reasoning in which sets of possible worlds, called incidences, are associated with axioms, and probabilities are then associated with these sets. Inference rules are used to deduce bounds on the incidence of formulae which are not axioms, and bounds for the probability of such a formula can then be obtained. In practice an assignment of probabilities directly to axioms may be given, and it is then necessary to find an assignment of incidence which will reproduce these probabilities. We show that this task of assigning incidences can be viewed as a tree searching problem, and two techniques for performing this research are discussed. One of these is a new proposal involving a depth first search, while the other incorporates a random element. A Prolog implementation of these methods has been developed. The two approaches are compared for efficiency and the significance of their results are discussed. Finally we discuss a new proposal for applying techniques from linear programming to incidence calculus.
Resumo:
Dealing with uncertainty problems in intelligent systems has attracted a lot of attention in the AI community. Quite a few techniques have been proposed. Among them, the Dempster-Shafer theory of evidence (DS theory) has been widely appreciated. In DS theory, Dempster's combination rule plays a major role. However, it has been pointed out that the application domains of the rule are rather limited and the application of the theory sometimes gives unexpected results. We have previously explored the problem with Dempster's combination rule and proposed an alternative combination mechanism in generalized incidence calculus. In this paper we give a comprehensive comparison between generalized incidence calculus and the Dempster-Shafer theory of evidence. We first prove that these two theories have the same ability in representing evidence and combining DS-independent evidence. We then show that the new approach can deal with some dependent situations while Dempster's combination rule cannot. Various examples in the paper show the ways of using generalized incidence calculus in expert systems.