A comprehensive comparison between generalized incidence calculus and Dempster-Shafer theory of evidence.
Data(s) |
01/06/1994
|
---|---|
Resumo |
Dealing with uncertainty problems in intelligent systems has attracted a lot of attention in the AI community. Quite a few techniques have been proposed. Among them, the Dempster-Shafer theory of evidence (DS theory) has been widely appreciated. In DS theory, Dempster's combination rule plays a major role. However, it has been pointed out that the application domains of the rule are rather limited and the application of the theory sometimes gives unexpected results. We have previously explored the problem with Dempster's combination rule and proposed an alternative combination mechanism in generalized incidence calculus. In this paper we give a comprehensive comparison between generalized incidence calculus and the Dempster-Shafer theory of evidence. We first prove that these two theories have the same ability in representing evidence and combining DS-independent evidence. We then show that the new approach can deal with some dependent situations while Dempster's combination rule cannot. Various examples in the paper show the ways of using generalized incidence calculus in expert systems. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Liu , W & Bundy , A 1994 , ' A comprehensive comparison between generalized incidence calculus and Dempster-Shafer theory of evidence. ' International Journal of Human-Computer Studies , vol 40(6) , pp. 1009-1032 . DOI: 10.1006/ijhc.1994.1046 |
Tipo |
article |