995 resultados para Streaming media
Resumo:
The concept of media influence has a long history in media and communication studies, and has also had significant influence on public policy. This article revisits questions of media influence through three short case studies. First, it critically analyses the strongly partisan position of News Corporation’s newspapers against the Labor government during the 2013 Australian Federal election to consider whether the potential for media influence equated to the effective use of media power. Second, it discusses the assumption in broadcasting legislation, in both the United Kingdom and Australia, that terrestrial broadcasting should be subject to more content regulation than subscription services, and notes the new challenges arising from digital television and over-the-top video streaming services. Finally, it discusses the rise of multi-platform global content aggregators such as Google, Apple, Microsoft and others, and how their rise necessitates changes in ways of thinking about concentration of media ownership, and regulations that may ensue from it.
Resumo:
Context. We investigate the growth of hydromagnetic waves driven by streaming cosmic rays in the precursor environment of a supernova remnant shock.
Aims. It is known that transverse waves propagating parallel to the mean magnetic field are unstable to anisotropies in the cosmic ray distribution, and may provide a mechanism to substantially amplify the ambient magnetic field. We quantify the extent to which temperature and ionisation fractions modify this picture.
Methods. Using a kinetic description of the plasma we derive the dispersion relation for a collisionless thermal plasma with a streaming cosmic ray current. Fluid equations are then used to discuss the effects of neutral-ion collisions.
Results. We calculate the extent to which the environment into which the cosmic rays propagate influences the growth of the magnetic field, and determines the range of possible growth rates.
Conclusions. If the cosmic ray acceleration is efficient, we find that very large neutral fractions are required to stabilise the growth of the non-resonant mode. For typical supernova parameters in our Galaxy, thermal effects do not significantly alter the growth rates. For weakly driven modes, ion-neutral damping can dominate over the instability at more modest ionisation fractions. In the case of a supernova shock interacting with a molecular clouds, such as in RX J1713.7-3946, with high density and low ionisation, the modes can be rapidly damped.
Resumo:
By 2015, with the proliferation of wireless multimedia applications and services (e.g., mobile TV, video on demand, online video repositories, immersive video interaction, peer to peer video streaming, and interactive video gaming), and any-time anywhere communication, the number of smartphones and tablets will exceed 6.5 billion as the most common web access devices. Data volumes in wireless multimedia data-intensive applications and mobile web services are projected to increase by a factor of 10 every five years, associated with a 20 percent increase in energy consumption, 80 percent of which is multimedia traffic related. In turn, multimedia energy consumption is rising at 16 percent per year, doubling every six years. It is estimated that energy costs alone account for as much as half of the annual operating expenditure. This has prompted concerted efforts by major operators to drastically reduce carbon emissions by up to 50 percent over the next 10 years. Clearly, there is an urgent need for new disruptive paradigms of green media to bridge the gap between wireless technologies and multimedia applications.
Resumo:
The world cup has become the most streamed live sporting event in the US, as Americans tune in to this year´s tournament on their smartphones, tablets and computers in record numbers.
Resumo:
This paper proposes the Optimized Power save Algorithm for continuous Media Applications (OPAMA) to improve end-user device energy efficiency. OPAMA enhances the standard legacy Power Save Mode (PSM) of IEEE 802.11 by taking into consideration application specific requirements combined with data aggregation techniques. By establishing a balanced cost/benefit tradeoff between performance and energy consumption, OPAMA is able to improve energy efficiency, while keeping the end-user experience at a desired level. OPAMA was assessed in the OMNeT++ simulator using real traces of variable bitrate video streaming applications. The results showed the capability to enhance energy efficiency, achieving savings up to 44% when compared with the IEEE 802.11 legacy PSM.
Resumo:
The widespread deployment of wireless mobile communications enables an almost permanent usage of portable devices, which imposes high demands on the battery of these devices. Indeed, battery lifetime is becoming one the most critical factors on the end-users satisfaction when using wireless communications. In this work, the optimized power save algorithm for continuous media applications (OPAMA) is proposed, aiming at enhancing the energy efficiency on end-users devices. By combining the application specific requirements with data aggregation techniques, {OPAMA} improves the standard {IEEE} 802.11 legacy Power Save Mode (PSM) performance. The algorithm uses the feedback on the end-user expected quality to establish a proper tradeoff between energy consumption and application performance. {OPAMA} was assessed in the OMNeT++ simulator, using real traces of variable bitrate video streaming applications, and in a real testbed employing a novel methodology intended to perform an accurate evaluation concerning video Quality of Experience (QoE) perceived by the end-users. The results revealed the {OPAMA} capability to enhance energy efficiency without degrading the end-user observed QoE, achieving savings up to 44 when compared with the {IEEE} 802.11 legacy PSM.
Resumo:
P2P applications are increasingly present on the web. We have identified a gap in current proposals when it comes to the use of traditional P2P overlays for real-time multimedia streaming. We analyze the possibilities and challenges to extend WebRTC in order to implement JavaScript APIs for P2P streaming algorithms.
Resumo:
Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.
Resumo:
The electronic and mechanical media such as film, television, photography, offset, are just examples of how fast and important the technological development had become in society. Nevertheless the outcoming technologies and the continuous development had provided newer and better possibilities every time for having advanced services. Nowadays multi-view video has been developed with different tools and applications, having as main goal to be more innovative and bring within technical offerings in a friendly for all users in general, in terms of managing and accessibility (just internet connection is needed). The intention of all technologies is to generate an innovation in order to gain more users and start being popular, therefore is important to realize an implementation in this case. In such terms realizing about the outreach that Multi View Video, an importance to become more global in this days, an application that supports this aim such as the possibility of language selection within the use of a same scenario has been realized. Finally is important to point out that thanks to the Multi View Video's continuous progress in technology a more intercultural market will be reachable, making of it a shared society growth on the world's global development. � ��� ���� ������� ��� �� ��� ��� �������� ��� ���� ��� ��� ������ ���������� � ���� � �� ���� ���� � ���� �� � � ���� � � ��� ��� �� ��� �� � ��� ��� ��������� �� � ����� ��������� ��� � ��� � ���� ���� ����� ����������� ��� ��� �� � ������������� �� �������� �������� ������� ������� �� ����� �������� ��� � � �� ���� �������� ���� ����� �������� �������� �� ������ ���� �� � ����������� ������������� � � ��!��� � � � �� ������� ��� ��������"������ � �� ���������� �������� ��� �� ������ � ����� ����� ��� ��� �� � �� �� ���� �� ��� �� ���� � � � �� ��� ������ �� �� ��� �� �� ��� �� � �� ��� #�� ��� ������� � ��� �� � �� ������$������� � ��� ��� # ������� � ����� ����� �� ���� �% ���% �������� ��� ����� ����������� �� ������� �� � �� ������ ��� ���� �� ��� �� � ����� �� � �� � �� ����� ��� ��� ���� � � �� ��� ��������� ����� ��� � � �� ���������������������� ����������� ��� #����& ������ �� ��� �� � ���� � ��� � �� � ���'�� �� ��� ��� � % ��� % ���(�� ��� ������ � �� ���� �� ���������� ���� �� � � ��� � ����� '� �� ��� ��� ���������� ��' ������ ������ ������ � ��� �� ����� ����� ��(������������������� ��� � �
Resumo:
Today P2P faces two important challenges: design of mechanisms to encourage users' collaboration in multimedia live streaming services; design of reliable algorithms with QoS provision, to encourage the multimedia providers employ the P2P topology in commercial live streaming systems. We believe that these two challenges are tightly-related and there is much to be done with respect. This paper analyzes the effect of user behavior in a multi-tree P2P overlay and describes a business model based on monetary discount as incentive in a P2P-Cloud multimedia streaming system. We believe a discount model can boost up users' cooperation and loyalty and enhance the overall system integrity and performance. Moreover the model bounds the constraints for a provider's revenue and cost if the P2P system is leveraged on a cloud infrastructure. Our case study shows that a streaming system provider can establish or adapt his business model by applying the described bounds to achieve a good discount-revenue trade-off and promote the system to the users.
Resumo:
ACKNOWLEDGEMENTS This research is based upon work supported in part by the U.S. ARL and U.K. Ministry of Defense under Agreement Number W911NF-06-3-0001, and by the NSF under award CNS-1213140. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views or represent the official policies of the NSF, the U.S. ARL, the U.S. Government, the U.K. Ministry of Defense or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.
Resumo:
ACKNOWLEDGEMENTS This research is based upon work supported in part by the U.S. ARL and U.K. Ministry of Defense under Agreement Number W911NF-06-3-0001, and by the NSF under award CNS-1213140. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views or represent the official policies of the NSF, the U.S. ARL, the U.S. Government, the U.K. Ministry of Defense or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.
Resumo:
This article investigates the distribution of Italian horror cinema in the age of video streaming, analyzing its presence and categorization on the platform Lovefilm Instant UK, in order to investigate the importance of ‘niche’ in what is known as the long tail of online distribution and the online availability of exploitation films. I argue that looking at the streaming presence of Italian horror and comparing it to its prior distribution on home video formats (in particular VHS and DVD) we can grasp how distribution and access have shaped the understanding of the genre. In particular, I address the question of the categorization of the films made by the S-VOD services and the limits of streaming distribution, such as lack of persistency in availability and the need of enhanced curatorship.