955 resultados para Statistics -- Fieldwork
Resumo:
“World food security … is at its lowest in half a century,” wrote Julian Cribb FTSE, a wellknown consultant in science communication and founding editor of www.sciencealert. com.au in the lead article in the 2008 ATSE Focus magazine issue entitled “Food for the world: the nation’s challenge”. Food security continues to be a key national and international concern and it is pleasing to see this issue of Focus again exploring aspects of the topic with the aim of continuing to raise awareness of issues and influencing relevant policy decisions. Statistics (or statistical science, more broadly) has been critical to the information and decision-making value chain needed to optimise agriculture and the food supply chain. The key steps are most often addressed by multidisciplinary research groups including statisticians in collaboration with life and physical scientists, agri-industry personnel and other relevant stakeholders.
Resumo:
Australia has a significantly higher suicide rate than England. Rather than accepting that this ‘statistical fact’ is a direct reflection of some positivist truth, this paper begins with the premise that how suicide is counted depends upon what counts as suicide. This study involves semi-structured interviews with coroners both in Australia and England, as well as observations at inquests. Important differences between the two coronial systems include: first, quite different logics of operation; second, the burden of proof for reaching a finding of suicide is significantly higher in England; and third, the presence of family members at English inquests results in far greater pressure being brought to bear upon coroners. These combined factors result in a reduced likelihood of English coroners reaching a finding of suicide. The conclusions are twofold. First, this research supports existing criticisms of comparative suicide statistics. Second, this research adds theoretical weight to criticisms of positivist analyses of social phenomena.
Resumo:
Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.
Resumo:
Yield in cultivated cotton (Gossypium spp.) is affected by the number and distribution of fibres initiated on the seed surface but, apart from simple statistical summaries, little has been done to assess this phenotype quantitatively. Here we use two types of spatial statistics to describe and quantify differences in patterning of cotton ovule fibre initials (FI). The following five different species of Gossypium were analysed: G. hirsutum L., G. barbadense L., G. arboreum, G. raimondii Ulbrich. and G. trilobum (DC.) Skovsted. Scanning electron micrographs of FIs were taken on the day of anthesis. Cell centres for fibre and epidermal cells were digitised and analysed by spatial statistics methods appropriate for marked point processes and tessellations. Results were consistent with previously published reports of fibre number and spacing. However, it was shown that the spatial distributions of FIs in all of species examined exhibit regularity, and are not completely random as previously implied. The regular arrangement indicates FIs do not appear independently of each other and we surmise there may be some form of mutual inhibition specifying fibre-initial development. It is concluded that genetic control of FIs differs from that of stomata, another well studied plant idioblast. Since spatial statistics show clear species differences in the distribution of FIs within this genus, they provide a useful method for phenotyping cotton. © CSIRO 2007.
Resumo:
Three core components in developing children’s understanding and appreciation of data — establish a context, pose and answer statistical questions, represent and interpret data — lay the foundation for the fourth component: use data to enhance existing context.
Resumo:
The majority of sugar mill locomotives are equipped with GPS devices from which locomotive position data is stored. Locomotive run information (e.g. start times, run destinations and activities) is electronically stored in software called TOTools. The latest software development allows TOTools to interpret historical GPS information by combining this data with run information recorded in TOTools and geographic information from a GIS application called MapInfo. As a result, TOTools is capable of summarising run activity details such as run start and finish times and shunt activities with great accuracy. This paper presents 15 reports developed to summarise run activities and speed information. The reports will be of use pre-season to assist in developing the next year's schedule and for determining priorities for investment in the track infrastructure. They will also be of benefit during the season to closely monitor locomotive run performance against the existing schedule.
Resumo:
Experts are increasingly being called upon to quantify their knowledge, particularly in situations where data is not yet available or of limited relevance. In many cases this involves asking experts to estimate probabilities. For example experts, in ecology or related fields, might be called upon to estimate probabilities of incidence or abundance of species, and how they relate to environmental factors. Although many ecologists undergo some training in statistics at undergraduate and postgraduate levels, this does not necessarily focus on interpretations of probabilities. More accurate elicitation can be obtained by training experts prior to elicitation, and if necessary tailoring elicitation to address the expert’s strengths and weaknesses. Here we address the first step of diagnosing conceptual understanding of probabilities. We refer to the psychological literature which identifies several common biases or fallacies that arise during elicitation. These form the basis for developing a diagnostic questionnaire, as a tool for supporting accurate elicitation, particularly when several experts or elicitors are involved. We report on a qualitative assessment of results from a pilot of this questionnaire. These results raise several implications for training experts, not only prior to elicitation, but more strategically by targeting them whilst still undergraduate or postgraduate students.
Resumo:
The practice of statistics is the focus of the world in which professional statisticians live. To understand meaningfully what this practice is about, students need to engage in it themselves. Acknowledging the limitations of a genuine classroom setting, this study attempted to expose four classes of year 5 students (n=91) to an authentic experience of the practice of statistics. Setting an overall context of people’s habits that are considered environmentally friendly, the students sampled their class and set criteria for being environmentally friendly based on questions from the Australian Bureau of Statistics CensusAtSchool site. They then analysed the data and made decisions, acknowledging their degree of certainty, about three populations based on their criteria: their class, year 5 students in their school and year 5 students in Australia. The next step was to collect a random sample the size of their class from an Australian Bureau of Statistics ‘population’, analyse it and again make a decision about Australian year 5 students. At the end, they suggested what further research they might do. The analysis of students’ responses gives insight into primary students’ capacity to appreciate and understand decision making, and to participate in the practice of statistics, a topic that has received very little attention in the literature. Based on the total possible score of 23 from student workbook entries, 80 % of students achieved at least a score of 11.
Resumo:
Many statistical forecast systems are available to interested users. In order to be useful for decision-making, these systems must be based on evidence of underlying mechanisms. Once causal connections between the mechanism and their statistical manifestation have been firmly established, the forecasts must also provide some quantitative evidence of `quality’. However, the quality of statistical climate forecast systems (forecast quality) is an ill-defined and frequently misunderstood property. Often, providers and users of such forecast systems are unclear about what ‘quality’ entails and how to measure it, leading to confusion and misinformation. Here we present a generic framework to quantify aspects of forecast quality using an inferential approach to calculate nominal significance levels (p-values) that can be obtained either by directly applying non-parametric statistical tests such as Kruskal-Wallis (KW) or Kolmogorov-Smirnov (KS) or by using Monte-Carlo methods (in the case of forecast skill scores). Once converted to p-values, these forecast quality measures provide a means to objectively evaluate and compare temporal and spatial patterns of forecast quality across datasets and forecast systems. Our analysis demonstrates the importance of providing p-values rather than adopting some arbitrarily chosen significance levels such as p < 0.05 or p < 0.01, which is still common practice. This is illustrated by applying non-parametric tests (such as KW and KS) and skill scoring methods (LEPS and RPSS) to the 5-phase Southern Oscillation Index classification system using historical rainfall data from Australia, The Republic of South Africa and India. The selection of quality measures is solely based on their common use and does not constitute endorsement. We found that non-parametric statistical tests can be adequate proxies for skill measures such as LEPS or RPSS. The framework can be implemented anywhere, regardless of dataset, forecast system or quality measure. Eventually such inferential evidence should be complimented by descriptive statistical methods in order to fully assist in operational risk management.
Resumo:
Climate variability and change are risk factors for climate sensitive activities such as agriculture. Managing these risks requires "climate knowledge", i.e. a sound understanding of causes and consequences of climate variability and knowledge of potential management options that are suitable in light of the climatic risks posed. Often such information about prognostic variables (e.g. yield, rainfall, run-off) is provided in probabilistic terms (e.g. via cumulative distribution functions, CDF), whereby the quantitative assessments of these alternative management options is based on such CDFs. Sound statistical approaches are needed in order to assess whether difference between such CDFs are intrinsic features of systems dynamics or chance events (i.e. quantifying evidences against an appropriate null hypothesis). Statistical procedures that rely on such a hypothesis testing framework are referred to as "inferential statistics" in contrast to descriptive statistics (e.g. mean, median, variance of population samples, skill scores). Here we report on the extension of some of the existing inferential techniques that provides more relevant and adequate information for decision making under uncertainty.
Resumo:
The National Health Interview Survey - Disability supplement (NHIS-D) provides information that can be used to understand myriad topics related to health and disability. The survey provides comprehensive information on multiple disability conceptualizations that can be identified using information about health conditions (both physical and mental), activity limitations, and service receipt (e.g. SSI, SSDI, Vocational Rehabilitation). This provides flexibility for researchers in defining populations of interest. This paper provides a description of the data available in the NHIS-D and information on how the data can be used to better understand the lives of people with disabilities.
Resumo:
Management of the commercial harvest of kangaroos relies on quotas set annually as a proportion of regular estimates of population size. Surveys to generate these estimates are expensive and, in the larger states, logistically difficult; a cheaper alternative is desirable. Rainfall is a disappointingly poor predictor of kangaroo rate of increase in many areas, but harvest statistics (sex ratio, carcass weight, skin size and animals shot per unit time) potentially offer cost-effective indirect monitoring of population abundance (and therefore trend) and status (i.e. under-or overharvest). Furthermore, because harvest data are collected continuously and throughout the harvested areas, they offer the promise of more intensive and more representative coverage of harvest areas than aerial surveys do. To be useful, harvest statistics would need to have a close and known relationship with either population size or harvest rate. We assessed this using longterm (11-22 years) data for three kangaroo species (Macropus rufus, M. giganteus and M. fuliginosus) and common wallaroos (M. robustus) across South Australia, New South Wales and Queensland. Regional variation in kangaroo body size, population composition, shooter efficiency and selectivity required separate analyses in different regions. Two approaches were taken. First, monthly harvest statistics were modelled as a function of a number of explanatory variables, including kangaroo density, harvest rate and rainfall. Second, density and harvest rate were modelled as a function of harvest statistics. Both approaches incorporated a correlated error structure. Many but not all regions had relationships with sufficient precision to be useful for indirect monitoring. However, there was no single relationship that could be applied across an entire state or across species. Combined with rainfall-driven population models and applied at a regional level, these relationships could be used to reduce the frequency of aerial surveys without compromising decisions about harvest management.
Resumo:
The simultaneous state and parameter estimation problem for a linear discrete-time system with unknown noise statistics is treated as a large-scale optimization problem. The a posterioriprobability density function is maximized directly with respect to the states and parameters subject to the constraint of the system dynamics. The resulting optimization problem is too large for any of the standard non-linear programming techniques and hence an hierarchical optimization approach is proposed. It turns out that the states can be computed at the first levelfor given noise and system parameters. These, in turn, are to be modified at the second level.The states are to be computed from a large system of linear equations and two solution methods are considered for solving these equations, limiting the horizon to a suitable length. The resulting algorithm is a filter-smoother, suitable for off-line as well as on-line state estimation for given noise and system parameters. The second level problem is split up into two, one for modifying the noise statistics and the other for modifying the system parameters. An adaptive relaxation technique is proposed for modifying the noise statistics and a modified Gauss-Newton technique is used to adjust the system parameters.