985 resultados para Stable solutions
Application of Artificial Viscosity in Establishing Supercritical Solutions to the Transonic Integra
Resumo:
The nonlinear singular integral equation of transonic flow is examined in the free-stream Mach number range where only solutions with shocks are known to exist. It is shown that, by the addition of an artificial viscosity term to the integral equation, even the direct iterative scheme, with the linear solution as the initial iterate, leads to convergence. Detailed tables indicating how the solution varies with changes in the parameters of the artificial viscosity term are also given. In the best cases (when the artificial viscosity is smallest), the solutions compare well with known results, their characteristic feature being the representation of the shock by steep gradients rather than by abrupt discontinuities. However, 'sharp-shock solutions' have also been obtained by the implementation of a quadratic iterative scheme with the 'artificial viscosity solution' as the initial iterate; the converged solution with a sharp shock is obtained with only a few more iterates. Finally, a review is given of various shock-capturing and shock-fitting schemes for the transonic flow equations in general, and for the transonic integral equation in particular, frequent comparisons being made with the approach of this paper.
Resumo:
Nature is a school for scientists and engineers. Inherent multiscale structures of biological materials exhibit multifunctional integration. In nature, the lotus, the water strider, and the flying bird evolved different and optimized biological solutions to survive. In this contribution, inspired by the optimized solutions from the lotus leaf with superhydrophobic self-cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic self-cleaning, striking loading capacity, and superior repellency towards different corrosive solutions. This approach provides an effective avenue to the development of water strider robots and other aquatic smart devices floating on water. Furthermore, the resultant multifunctional metallic foam can be used to construct an oil/water separation apparatus, exhibiting a high separation efficiency and long-term repeatability. The presented approach should provide a promising solution for the design and construction of other multifunctional metallic foams in a large scale for practical applications in the petro-chemical field. Optimized biological solutions continue to inspire and to provide design idea for the construction of multiscale structures with multifunctional integration. Inspired by the optimized biological solutions from the lotus leaf with superhydrophobic self-cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic self-cleaning, striking loading capacity, stable corrosion resistance, and oil/water separation.
Resumo:
Hydrophobins are a group of particularly surface active proteins. The surface activity is demonstrated in the ready adsorption of hydrophobins to hydrophobic/hydrophilic interfaces such as the air/water interface. Adsorbed hydrophobins self-assemble into ordered films, lower the surface tension of water, and stabilize air bubbles and foams. Hydrophobin proteins originate from filamentous fungi. In the fungi the adsorbed hydrophobin films enable the growth of fungal aerial structures, form protective coatings and mediate the attachment of fungi to solid surfaces. This thesis focuses on hydrophobins HFBI, HFBII, and HFBIII from a rot fungus Trichoderma reesei. The self-assembled hydrophobin films were studied both at the air/water interface and on a solid substrate. In particular, using grazing-incidence x-ray diffraction and reflectivity, it was possible to characterize the hydrophobin films directly at the air/water interface. The in situ experiments yielded information on the arrangement of the protein molecules in the films. All the T. reesei hydrophobins were shown to self-assemble into highly crystalline, hexagonally ordered rafts. The thicknesses of these two-dimensional protein crystals were below 30 Å. Similar films were also obtained on silicon substrates. The adsorption of the proteins is likely to be driven by the hydrophobic effect, but the self-assembly into ordered films involves also specific protein-protein interactions. The protein-protein interactions lead to differences in the arrangement of the molecules in the HFBI, HFBII, and HFBIII protein films, as seen in the grazing-incidence x-ray diffraction data. The protein-protein interactions were further probed in solution using small-angle x-ray scattering. Both HFBI and HFBII were shown to form mainly tetramers in aqueous solution. By modifying the solution conditions and thereby the interactions, it was shown that the association was due to the hydrophobic effect. The stable tetrameric assemblies could tolerate heating and changes in pH. The stability of the structure facilitates the persistence of these secreted proteins in the soil.
Resumo:
The linear stability analysis of a plane Couette flow of viscoelastic fluid have been studied with the emphasis on two dimensional disturbances with wave number k similar to Re-1/2, where Re is Reynolds number based on maximum velocity and channel width. We employ three models to represent the dilute polymer solution: the classical Oldroyd-B model, the Oldroyd-B model with artificial diffusivity and the non-homogeneous polymer model. The result of the linear stability analysis is found to be sensitive to the polymer model used. While the plane Couette flow is found to be stable to infinitesimal disturbances for the first two models, the last one exhibits a linear instability.
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The Cm(urea)/Cm(GdmCl) ratio (where Cm is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide cross-linked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74‘) and (13‘-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol−disulfide exchange.
Resumo:
An exact representation of N-wave solutions for the non-planar Burgers equation u(t) + uu(x) + 1/2ju/t = 1/2deltau(xx), j = m/n, m < 2n, where m and n are positive integers with no common factors, is given. This solution is asymptotic to the inviscid solution for Absolute value of x < square-root (2Q0 t), where Q0 is a function of the initial lobe area, as lobe Reynolds number tends to infinity, and is also asymptotic to the old age linear solution, as t tends to infinity; the formulae for the lobe Reynolds numbers are shown to have the correct behaviour in these limits. The general results apply to all j = m/n, m < 2n, and are rather involved; explicit results are written out for j = 0, 1, 1/2, 1/3 and 1/4. The case of spherical symmetry j = 2 is found to be 'singular' and the general approach set forth here does not work; an alternative approach for this case gives the large time behaviour in two different time regimes. The results of this study are compared with those of Crighton & Scott (1979).
Resumo:
Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution), which requires only three inputs, namely the solid metal concentration, saturation concentration of the dissolved metal ions and diffusion coefficient. A combined eXtended Finite Element Model (XFEM) and level set method is developed in this paper. The extended finite element model handles the jump discontinuity in the metal concentrations at the interface, by using discontinuous-derivative enrichment formulation for concentration discontinuity at the interface. This eliminates the requirement of using front conforming mesh and re-meshing after each time step as in conventional finite element method. A numerical technique known as level set method tracks the position of the moving interface and updates it over time. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed method is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions.
Resumo:
Here we extend the exploration of significantly super-Chandrasekhar magnetized white dwarfs by numerically computing axisymmetric stationary equilibria of differentially rotating magnetized polytropic compact stars in general relativity (GR), within the ideal magnetohydrodynamic regime. We use a general relativistic magnetohydrodynamic (GRMHD) framework that describes rotating and magnetized axisymmetric white dwarfs, choosing appropriate rotation laws and magnetic field profiles (toroidal and poloidal). The numerical procedure for finding solutions in this framework uses the 3 + 1 formalism of numerical relativity, implemented in the open source XNS code. We construct equilibrium sequences by varying different physical quantities in turn, and highlight the plausible existence of super-Chandrasekhar white dwarfs, with masses in the range of 2-3 solar mass, with central (deep interior) magnetic fields of the order of 10(14) G and differential rotation with surface time periods of about 1-10 s. We note that such white dwarfs are candidates for the progenitors of peculiar, overluminous Type Ia supernovae, to which observational evidence ascribes mass in the range 2.1-2.8 solar mass. We also present some interesting results related to the structure of such white dwarfs, especially the existence of polar hollows in special cases.
Resumo:
The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220
Resumo:
The aim of this paper is to propose a new solution for the roommate problem with strict preferences. We introduce the solution of maximum irreversibility and consider almost stable matchings (Abraham et al. [2])and maximum stable matchings (Ta [30] [32]). We find that almost stable matchings are incompatible with the other two solutions. Hence, to solve the roommate problem we propose matchings that lie at the intersection of the maximum irreversible matchings and maximum stable matchings, which are called Q-stable matchings. These matchings are core consistent and we offer an effi cient algorithm for computing one of them. The outcome of the algorithm belongs to an absorbing set.
Resumo:
Part I
Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.
The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.
Part II
The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.
Part III
An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.
Resumo:
A multivariate, robust, rational interpolation method for propagating uncertainties in several dimensions is presented. The algorithm for selecting numerator and denominator polynomial orders is based on recent work that uses a singular value decomposition approach. In this paper we extend this algorithm to higher dimensions and demonstrate its efficacy in terms of convergence and accuracy, both as a method for response suface generation and interpolation. To obtain stable approximants for continuous functions, we use an L2 error norm indicator to rank optimal numerator and denominator solutions. For discontinous functions, a second criterion setting an upper limit on the approximant value is employed. Analytical examples demonstrate that, for the same stencil, rational methods can yield more rapid convergence compared to pseudospectral or collocation approaches for certain problems. © 2012 AIAA.
Resumo:
Microcystins (MCs) are a family of related cyclic hepatotoxic heptapeptides, of which more than 70 types have been identified. The chemically unique nature of the C20 beta-amino acid, (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca4,6-dienoic acid (Adda), portion of the MCs has been exploited to develop a strategy to analyze the entirety. Oxidation of MCs causes the cleavage of MC Adda to form 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB). In the present study, we investigated the kinetics of MMPB produced by oxidation of the most-often-studied MC variant, MC-LR (L = leucine, R = arginine), with permanganate-periodate. This investigation allowed insight regarding the influence of the reaction conditions (concentration of the reactants, temperature, and pH) on the conversion rate. The results indicated that the reaction was second order overall and first order with respect to both permanganate and MC-LR. The second-order rate constant ranged from 0.66 to 1.35 M/s at temperatures from 10 to 30 degrees C, and the activation energy was 24.44 kJ/mol. The rates of MMPB production can be accelerated through increasing reaction temperature and oxidant concentration, and sufficient periodate is necessary for the formation of MMPB. The initial reaction rate under alkaline and neutral conditions is higher than that under acidic conditions, but the former decreases faster than the latter except under weakly acidic conditions. These results provided new insight concerning selection of the permanganate-periodate concentration, pH, and temperature needed for the oxidation of MCs with a high and stable yield of MMPB.
Resumo:
The hydrolysis/precipitation behaviors of Al3+, Al-13 and Al-30 under conditions typical for flocculation in water treatment were investigated by studying the particulates' size development, charge characteristics, chemical species and speciation transformation of coagulant hydrolysis precipitates. The optimal pH conditions for hydrolysis precipitates formation for AlCl3, PAC(A113) and PAC(A130) were 6.5-7.5, 8.5-9.5, and 7.5-9.5, respectively. The precipitates' formation rate increased with the increase in dosage, and the relative rates were AlCl3 >> PAC(A130) > PACA113. The precipitates' size increased when the dosage increased from 50 mu M to 200 mu M, but it decreased when the dosage increased to 800 AM. The Zeta potential of coagulant hydrolysis precipitates decreased with the increase in pH for the three coagulants. The isoelectric points of the freshly formed precipitates for AlCl3, PAC(A113) and PAC(A130) were 7.3, 9.6 and 9.2, respectively. The Zeta potentials of AlCl3 hydrolysis precipitates were lower than those of PAC(A113) and PAC(A130) when pH > 5.0. The Zeta potential of PAC(A130) hydrolysis precipitates was higher than that of PACA113 at the acidic side, but lower at the alkaline side. The dosage had no obvious effect on the Zeta potential of hydrolysis precipitates under fixed pH conditions. The increase in Zeta potential with the increase in dosage under uncontrolled pH conditions was due to the pH depression caused by coagulant addition. Al-Ferron research indicated that the hydrolysis precipitates of AlCl3 were composed of amorphous AI(OH)3 precipitates, but those of PACA113 and PACA130 were composed of aggregates of Al-13 and Al-30, respectively. Al3+ was the most un-stable species in coagulants, and its hydrolysis was remarkably influenced by solution pH. Al-13 and Al-30 species were very stable, and solution pH and aging had little effect on the chemical species of their hydrolysis products. The research method involving coagulant hydrolysis precipitates based on Al-Ferron reaction kinetics was studied in detail. The Al species classification based on complex reaction kinetic of hydrolysis precipitates and Ferron reagent was different from that measured in a conventional coagulant assay using the Al--Ferron method. The chemical composition of Al-a, Al-b and Al-c depended on coagulant and solution pH. The Al-b measured in the current case was different from Keggin Al-13, and the high Alb content in the AlCl3 hydrolysis precipitates could not used as testimony that most of the Al3+ Was converted to highly charged Al-13 species during AlCl3 coagulation.
Resumo:
Nanosized Ce1-xCuxOy materials were prepared by complexation-combustion method. The structural characteristics and redox behaviors were investigated using X-ray diffraction (XRD), temperature programmed reduction (H-2-TPR), UV-Vis, and Raman spectroscopies. In XRD patterns, no evidence of CuO diffraction peaks are observed for the Ce1-xCuxOy samples calcinated at 650 degreesC for 5 h, until the Cu/(Ce + Cu) ratio is higher than 0.4. The stepwise decrease of the 2theta value of CeO2 in Ce1-xCuxOy with the increasing of Cu concentration suggests that the CU2+ ions incorporate into the CeO2 lattice to form Ce1-xCuxOy solid solutions for low Cu/(Ce + Cu) ratios (x less than or equal to 0.1). The CuO phase begins to segregate from the solid solutions with the further increasing of Cu/(Ce+Cu) ratio. The Raman mode at 1176 cm(-1) ascribed to the enhanced defects appears for CeO2 and the Ce0.9Cu0.1Oy solid solution. Compared with CeO2 alone, the Raman mode of cubic CeO2 shifts from 462 to 443 cm(-1) for the Ce0.9Cu0.1Oy solid solution. The H-2 consumption of the fresh Ce0.95Cu0.05Oy is 1.65 times higher than that needed to reduce CuO to Cu, and it increases to 2.4 after a reoxidation of the partially reduced Ce0.95Cu0.05Oy at 300 degreesC, which indicates that the CeO2 phase is also extensively reduced. Compared with the high Cu/(Ce+Cu) ratio sample Ce0.7Cu0.3Oy, the Ce0.9Cu0.1Oy solid solution shows high and stable redox property even after different reoxidation temperatures. When the reoxidation temperature exceeds 200 degreesC, the a peak (similar to170 degreesC) ascribed to the reduction of surface oxygen disappears, and the P peak (similar to190 degreesC) ascribed to the reduction of Cu2+ species and the partial reduction of bulk CeO2 shifts to higher temperatures with the H-2 consumption 1.16 times higher than that for fresh sample. The result demonstrates that the redox property of the CeO2 is Significantly improved by forming the Ce1-xCuxOy solid solutions.