933 resultados para Spherical activated carbons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen functionalization of a highly microporous activated carbon (BET surface area higher than 3000 m2/g) has been achieved using the following sequence of treatments: (i) chemical oxidation using concentrated nitric acid, (ii) amidation by acyl chloride substitution with NH4NO3 and (iii) amination by Hoffman rearrangement. This reaction pathway yielded amide and amine functional groups, and a total nitrogen content higher than 3 at.%. It is achieved producing only a small decrease (20%) of the starting microporosity, being most of it related to the initial wet oxidation of the activated carbon. Remarkably, nitrogen aromatic rings were also formed as a consequence of secondary cyclation reactions. The controlled step-by-step modification of the surface chemistry allowed to assess the influence of individual nitrogen surface groups in the electrochemical performance in 1 M H2SO4 of the carbon materials. The largest gravimetric capacitance was registered for the pristine activated carbon due to its largest apparent surface area. The nitrogen-containing activated carbons showed the highest surface capacitances. Interestingly, the amidated activated carbon showed the superior capacitance retention due to the presence of functional groups (such as lactams, imides and pyrroles) that enhance electrical conductivity through their electron-donating properties, showing a capacitance of 83 F/g at 50 A/g.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two petroleum residues were pyrolyzed under two different conditions to obtain pitches with low or high mesophase content. The effect of the KOH: precursor ratio and the activation temperature on the packing density and porous texture of the carbons have been studied and optimized. Activated carbons combining high micropore volume (>1 cm3/g) and high packing density (0.7 g/cm3) have been successfully prepared. Regarding excess methane adsorption capacities, the best results (160 cm3 (STP)/cm3 at 25 °C and 3.5 MPa) were obtained using the pitch with the higher content of the more organized mesophase, activated at relatively low temperature (700 °C), with a medium KOH: precursor ratio (3:1). Some of the activated carbons exhibit enhanced adsorption capacity at high pressure, giving values as high as 175 cm3 (STP)/cm3 at 25 °C and 5 MPa and 200 cm3 (STP)/cm3 at 25 °C and 10 MPa (the same amount as in an empty cylinder but at half of the pressure), indicating a contribution of large micropores and narrow mesopores to adsorption at high pressure. The density of methane in pores between 1 and 2.5 nm at pressure up to 10 MPa was estimated to understand their contribution to the total adsorption capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbons were prepared by chemical activation of hydrochars, obtained by hydrothermal carbonisation (HTC) using low cost and abundant precursors such as rye straw and cellulose, with KOH. Hydrochars derived from rye straw were chemically activated using different KOH/precursor ratios, in order to assess the effect of this parameter on their electrochemical behaviour. In the case of cellulose, the influence of the hydrothermal carbonisation temperature was studied by fixing the activating agent/cellulose ratio. Furthermore, N-doped activated carbons were synthesised by KOH activation of hydrochars prepared by HTC from a mixture of glucose with melamine or glucosamine. In this way, N-doped activated carbons were prepared in order to evaluate the influence of nitrogen groups on their electrochemical behaviour in acidic medium. The results showed that parameters such as chemical activation or carbonisation temperature clearly affect the capacitance, since these parameters play a key role in the textural properties of activated carbons. Finally, symmetric capacitors based on activated carbon and N-doped activated carbon were tested at 1.3 V in a two-electrode cell configuration and the results revealed that N-groups improved the capacitance at high current density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of two different materials as electrodes allows the construction of asymmetric and hybrid capacitors cells with enhanced energy and power density. This approach is especially well-suited for overcoming the limitations of pseudocapacitive materials that provide a huge capacitance boost, but in a limited potential window. In this work, we introduce the concepts and protocols that are required for a successful design of such systems, which is illustrated by the construction of an asymmetric hybrid cell where a zeolite-templated carbon and an ultraporous activated carbon have been combined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption of nitrogen, argon, methane, and carbon dioxide on activated carbon Norit R1 over a wide range of pressure (up to 50 MPa) at temperatures from 298 to 343 K (supercritical conditions) is analyzed by means of the density functional theory modified by incorporating the Bender equation of state, which describes the bulk phase properties with very high accuracy. It has allowed us to precisely describe the experimental data of carbon dioxide adsorption slightly above and below its critical temperatures. The pore size distribution (PSD) obtained with supercritical gases at ambient temperatures compares reasonably well with the PSD obtained with subcritical nitrogen at 77 K. Our approach does not require the skeletal density of activated carbon from helium adsorption measurements to calculate excess adsorption. Instead, this density is treated as a fitting parameter, and in all cases its values are found to fall into a very narrow range close to 2000 kg/m(3). It was shown that in the case of high-pressure adsorption of supercritical gases the PSD could be reliably obtained for the range of pore width between 0.6 and 3 run. All wider pores can be reliably characterized only in terms of surface area as their corresponding excess local isotherms are the same over a practical range of pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach based on the nonlocal density functional theory to determine pore size distribution (PSD) of activated carbons and energetic heterogeneity of the pore wall is proposed. The energetic heterogeneity is modeled with an energy distribution function (EDF), describing the distribution of solid-fluid potential well depth (this distribution is a Dirac delta function for an energetic homogeneous surface). The approach allows simultaneous determining of the PSD (assuming slit shape) and EDF from nitrogen or argon isotherms at their respective boiling points by using a set of local isotherms calculated for a range of pore widths and solid-fluid potential well depths. It is found that the structure of the pore wall surface significantly differs from that of graphitized carbon black. This could be attributed to defects in the crystalline structure of the surface, active oxide centers, finite size of the pore walls (in either wall thickness or pore length), and so forth. Those factors depend on the precursor and the process of carbonization and activation and hence provide a fingerprint for each adsorbent. The approach allows very accurate correlation of the experimental adsorption isotherm and leads to PSDs that are simpler and more realistic than those obtained with the original nonlocal density functional theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption of binary mixtures onto activated carbon Norit R1 for the system nitrogen-methane-carbon dioxide was investigated over the pressure range up to 15 MPa. A new model is proposed to describe the experimental data. It is based on the assumption that an activated carbon can be characterized by the distribution function of elements of adsorption volume (EAV) over the solid-fluid potential. This function may be evaluated from pure component isotherms using the equality of the chemical potentials in the adsorbed phase and in the bulk phase for each EAV. In the case of mixture adsorption a simple combining rule is proposed, which allows determining the adsorbed phase density and its composition in the EAV at given pressure and compositions of the bulk phase. The adsorbed concentration of each adsorbate is the integral of its density over the set of EAV. The comparison with experimental data on binary mixtures has shown that the approach works reasonably well. In the case of high-pressure binary mixture adsorption, when only total amount adsorbed was measured, the proposed model allows reliably determining partial amounts of the adsorbed components. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption of a basic dye, methylene blue, from aqueous solutions onto as-received activated carbons and acid-treated carbons was investigated. The physical and surface chemical properties of the activated carbons were characterized using BET-N-2 adsorption, X-ray photoelectron spectroscopy (XPS), and mass titration. It was found that acid treatment had little effect on carbon textural characteristics but significantly changed the surface chemical properties, resulting in an adverse effect on dye adsorption. The physical properties of activated carbon, such as surface area and pore volume, have little effect on dye adsorption, while the pore size distribution and the surface chemical characteristics play important roles in dye adsorption. The pH value of the solution also influences the adsorption capacity significantly. For methylene blue, a higher pH of solution favors the adsorption capacity. The kinetic adsorption of methylene blue on all carbons follows a pseudo-second-order equation. (c) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of nonlocal density functional theory (NLDFT) to determine pore size distribution (PSD) of activated carbons using a nongraphitized carbon black, instead of graphitized thermal carbon black, as a reference system is explored. We show that in this case nitrogen and argon adsorption isotherms in activated carbons are precisely correlated by the theory, and such an excellent correlation would never be possible if the pore wall surface was assumed to be identical to that of graphitized carbon black. It suggests that pore wall surfaces of activated carbon are closer to that of amorphous solids because of defects of crystalline lattice, finite pore length, and the presence of active centers.. etc. Application of the NLDFT adapted to amorphous solids resulted in quantitative description of N-2 and Ar adsorption isotherms on nongraphitized carbon black BP280 at their respective boiling points. In the present paper we determined solid-fluid potentials from experimental adsorption isotherms on nongraphitized carbon black and subsequently used those potentials to model adsorption in slit pores and generate a corresponding set of local isotherms, which we used to determine the PSD functions of different activated carbons. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fixed bed CO2 adsorption tests were carried out in model flue-gas streams onto two commercial activated carbons, namely Filtrasorb 400 and Nuchar RGC30, at 303 K, 323 K and 353 K. Thermodynamic adsorption results highlighted that the presence of a narrower micropore size distribution with a prevailing contribution of very small pore diameters, observed for Filtrasorb 400, is a key factor in determining a higher CO2 capture capacity, mostly at low temperature. These experimental evidences were also corroborated by the higher value of the isosteric heat derived for Filtrasorb 400, testifying stronger interactions with CO2 molecules with respect to Nuchar RGC30. Dynamic adsorption results on the investigated sorbents highlighted the important role played by both a greater contribution of mesopores and the presence of wider micropores for Nuchar RGC30 in establishing faster capture kinetics with respect to Filtrasorb 400, in particular at 303 K. Furthermore, the modeling analysis of 15% CO2 breakthrough curves allowed identifying intraparticle diffusion as the rate-determining step of the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the production of carbons materials with a nitrogen content around 8%(w/w) and a well-developed porous structure, with BET surface area and pore volume up to 2130 m2 g−1 and 1.12 cm3 g−1, respectively, produced by a combination of hydrothermal carbonization, an environmental friendly method in the production of sustainable tunable carbon materials, with traditional activation methods. The porosity was developed through an activation process according to different routes, namely activation with CO2 and chemical activation using CaCO3 and K2CO3. The successful production of activated carbons using chitosan as a nitrogen source revealed to be a good alternative to post-synthesis methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrothermal carbonization can be considered an environmental friendly process for the production of carbon materials with tailored properties, such as regular porous structure and specific surface chemistry. This process is easy to perform and uses mild temperatures without the use of solvents or gases, which results in a positive environmental balance when compared with the usual pyrolysis process [1]. Diabetes affects more than 152 million people in Europe and is on the rise all over the World. Metformin is one of the most used drugs to treat type 2 diabetes. This drug is an endocrine disruptor with a potential negative impact in the environment due to the fact that metformin is almost not metabolized in the human body and the incorrect disposal into the domestic garbage. Another relevant aspect is the danger of overdose intake of the drug that can lead to lactic acidosis, which in extreme cases can be lethal. The work now reported study the in vitro adsorption of metformin onto activated carbons using simulated gastric and intestinal fluids.