6 resultados para Spherical activated carbons
em CaltechTHESIS
Resumo:
The dispersion of an isolated, spherical, Brownian particle immersed in a Newtonian fluid between infinite parallel plates is investigated. Expressions are developed for both a 'molecular' contribution to dispersion, which arises from random thermal fluctuations, and a 'convective' contribution, arising when a shear flow is applied between the plates. These expressions are evaluated numerically for all sizes of the particle relative to the bounding plates, and the method of matched asymptotic expansions is used to develop analytical expressions for the dispersion coefficients as a function of particle size to plate spacing ratio for small values of this parameter.
It is shown that both the molecular and convective dispersion coefficients decrease as the size of the particle relative to the bounding plates increase. When the particle is small compared to the plate spacing, the coefficients decrease roughly proportional to the particle size to plate spacing ratio. When the particle closely fills the space between the plates, the molecular dispersion coefficient approaches zero slowly as an inverse logarithmic function of the particle size to plate spacing ratio, and the convective dispersion coefficent approaches zero approximately proportional to the width of the gap between the edges of the sphere and the bounding plates.
Resumo:
Part I: The dynamic response of an elastic half space to an explosion in a buried spherical cavity is investigated by two methods. The first is implicit, and the final expressions for the displacements at the free surface are given as a series of spherical wave functions whose coefficients are solutions of an infinite set of linear equations. The second method is based on Schwarz's technique to solve boundary value problems, and leads to an iterative solution, starting with the known expression for the point source in a half space as first term. The iterative series is transformed into a system of two integral equations, and into an equivalent set of linear equations. In this way, a dual interpretation of the physical phenomena is achieved. The systems are treated numerically and the Rayleigh wave part of the displacements is given in the frequency domain. Several comparisons with simpler cases are analyzed to show the effect of the cavity radius-depth ratio on the spectra of the displacements.
Part II: A high speed, large capacity, hypocenter location program has been written for an IBM 7094 computer. Important modifications to the standard method of least squares have been incorporated in it. Among them are a new way to obtain the depth of shocks from the normal equations, and the computation of variable travel times for the local shocks in order to account automatically for crustal variations. The multiregional travel times, largely based upon the investigations of the United States Geological Survey, are confronted with actual traverses to test their validity.
It is shown that several crustal phases provide control enough to obtain good solutions in depth for nuclear explosions, though not all the recording stations are in the region where crustal corrections are considered. The use of the European travel times, to locate the French nuclear explosion of May 1962 in the Sahara, proved to be more adequate than previous work.
A simpler program, with manual crustal corrections, is used to process the Kern County series of aftershocks, and a clearer picture of tectonic mechanism of the White Wolf fault is obtained.
Shocks in the California region are processed automatically and statistical frequency-depth and energy depth curves are discussed in relation to the tectonics of the area.
Resumo:
This work presents the development and investigation of a new type of concrete for the attenuation of waves induced by dynamic excitation. Recent progress in the field of metamaterials science has led to a range of novel composites which display unusual properties when interacting with electromagnetic, acoustic, and elastic waves. A new structural metamaterial with enhanced properties for dynamic loading applications is presented, which is named metaconcrete. In this new composite material the standard stone and gravel aggregates of regular concrete are replaced with spherical engineered inclusions. Each metaconcrete aggregate has a layered structure, consisting of a heavy core and a thin compliant outer coating. This structure allows for resonance at or near the eigenfrequencies of the inclusions, and the aggregates can be tuned so that resonant oscillations will be activated by particular frequencies of an applied dynamic loading. The activation of resonance within the aggregates causes the overall system to exhibit negative effective mass, which leads to attenuation of the applied wave motion. To investigate the behavior of metaconcrete slabs under a variety of different loading conditions a finite element slab model containing a periodic array of aggregates is utilized. The frequency dependent nature of metaconcrete is investigated by considering the transmission of wave energy through a slab, which indicates the presence of large attenuation bands near the resonant frequencies of the aggregates. Applying a blast wave loading to both an elastic slab and a slab model that incorporates the fracture characteristics of the mortar matrix reveals that a significant portion of the supplied energy can be absorbed by aggregates which are activated by the chosen blast wave profile. The transfer of energy from the mortar matrix to the metaconcrete aggregates leads to a significant reduction in the maximum longitudinal stress, greatly improving the ability of the material to resist damage induced by a propagating shock wave. The various analyses presented in this work provide the theoretical and numerical background necessary for the informed design and development of metaconcrete aggregates for dynamic loading applications, such as blast shielding, impact protection, and seismic mitigation.
Resumo:
A study was conducted on the adsorption of Escherichia coli bacteriophage T4 to activated carbon. Preliminary adsorption experiments were also made with poliovirus Type III. The effectiveness of such adsorbents as diatomaceous earth, Ottawa sand, and coconut charcoal was also tested for virus adsorption.
The kinetics of adsorption were studied in an agitated solution containing virus and carbon. The mechanism of attachment and site characteristics were investigated by varying pH and ionic strength and using site-blocking reagents.
Plaque assay procedures were developed for bacteriophage T4 on Escherichia coli cells and poliovirus Type III on monkey kidney cells. Factors influencing the efficiency of plaque formation were investigated.
The kinetics of bacteriophage T4 adsorption to activated carbon can be described by a reversible second-order equation. The reaction order was first order with respect to both virus and carbon concentration. This kinetic representation, however, is probably incorrect at optimum adsorption conditions, which occurred at a pH of 7.0 and ionic strength of 0.08. At optimum conditions the adsorption rate was satisfactorily described by a diffusion-limited process. Interpretation of adsorption data by a development of the diffusion equation for Langmuir adsorption yielded a diffusion coefficient of 12 X 10-8 cm2/sec for bacteriophage T4. This diffusion coefficient is in excellent agreement with the accepted value of 8 X 10-8 cm2/sec. A diffusion-limited theory may also represent adsorption at conditions other than the maximal. A clear conclusion on the limiting process cannot be made.
Adsorption of bacteriophage T4 to activated carbon obeys the Langmuir isotherm and is thermodynamically reversible. Thus virus is not inactivated by adsorption. Adsorption is unimolecular with very inefficient use of the available carbon surface area. The virus is probably completely excluded from pores due to its size.
Adsorption is of a physical nature and independent of temperature. Attraction is due to electrostatic forces between the virus and carbon. Effects of pH and ionic strength indicated that carboxyl groups, amino groups, and the virus's tail fibers are involved in the attachment of virus to carbon. The active sites on activated carbon for adsorption of bacteriophage T4 are carboxyl groups. Adsorption can be completely blocked by esterifying these groups.
Resumo:
The behavior of spheres in non-steady translational flow has been studied experimentally for values of Reynolds number from 0.2 to 3000. The aim of the work was to improve our qualitative understanding of particle transport in turbulent gaseous media, a process of extreme importance in power plants and energy transfer mechanisms.
Particles, subjected to sinusoidal oscillations parallel to the direction of steady translation, were found to have changes in average drag coefficient depending upon their translational Reynolds number, the density ratio, and the dimensionless frequency and amplitude of the oscillations. When the Reynolds number based on sphere diameter was less than 200, the oscillation had negligible effect on the average particle drag.
For Reynolds numbers exceeding 300, the coefficient of the mean drag was increased significantly in a particular frequency range. For example, at a Reynolds number of 3000, a 25 per cent increase in drag coefficient can be produced with an amplitude of oscillation of only 2 per cent of the sphere diameter, providing the frequency is near the frequency at which vortices would be shed in a steady flow at the mean speed. Flow visualization shows that over a wide range of frequencies, the vortex shedding frequency locks in to the oscillation frequency. Maximum effect at the natural frequency and lock-in show that a non-linear interaction between wake vortex shedding and the oscillation is responsible for the increase in drag.
Resumo:
The Maxwell integral equations of transfer are applied to a series of problems involving flows of arbitrary density gases about spheres. As suggested by Lees a two sided Maxwellian-like weighting function containing a number of free parameters is utilized and a sufficient number of partial differential moment equations is used to determine these parameters. Maxwell's inverse fifth-power force law is used to simplify the evaluation of the collision integrals appearing in the moment equations. All flow quantities are then determined by integration of the weighting function which results from the solution of the differential moment system. Three problems are treated: the heat-flux from a slightly heated sphere at rest in an infinite gas; the velocity field and drag of a slowly moving sphere in an unbounded space; the velocity field and drag torque on a slowly rotating sphere. Solutions to the third problem are found to both first and second-order in surface Mach number with the secondary centrifugal fan motion being of particular interest. Singular aspects of the moment method are encountered in the last two problems and an asymptotic study of these difficulties leads to a formal criterion for a "well posed" moment system. The previously unanswered question of just how many moments must be used in a specific problem is now clarified to a great extent.