999 resultados para Spherical Couette Flow
Resumo:
The reduction of greenhouse gas emissions in the European Union promotes the combustion of biomass rather than fossil fuels in energy production. Circulating fluidized bed (CFB) combustion offers a simple, flexible and efficient way to utilize untreated biomass in a large scale. CFB furnaces are modeled in order to understand their operation better and to help in the design of new furnaces. Therefore, physically accurate models are needed to describe the heavily coupled multiphase flow, reactions and heat transfer inside the furnace. This thesis presents a new model for the fuel flow inside the CFB furnace, which acknowledges the physical properties of the fuel and the multiphase flow phenomena inside the furnace. This model is applied with special interest in the firing of untreated biomass. An experimental method is utilized to characterize gas-fuel drag force relations. This characteristic drag force approach is developed into a gas-fuel drag force model suitable for irregular, non-spherical biomass particles and applied together with the new fuel flow model in the modeling of a large-scale CFB furnace. The model results are physically valid and achieve very good correspondence with the measurement results from large-scale CFB furnace firing biomass. With the methods and models presented in this work, the fuel flow field inside a circulating fluidized bed furnace can be modeled with better accuracy and more efficiently than in previous studies with a three-dimensional holistic model frame.
Resumo:
It is shown that, for a sufficiently large value of β, two-dimensional flow on a doubly-periodic beta-plane cannot be ergodic (phase-space filling) on the phase-space surface of constant energy and enstrophy. A corresponding result holds for flow on the surface of a rotating sphere, for a sufficiently rapid rotation rate Ω. This implies that the higher-order, non-quadratic invariants are exerting a significant influence on the statistical evolution of the flow. The proof relies on the existence of a finite-amplitude Liapunov stability theorem for zonally symmetric basic states with a non-vanishing absolute-vorticity gradient. When the domain size is much larger than the size of a typical eddy, then a sufficient condition for non-ergodicity is that the wave steepness ε < 1, where ε = 2[surd radical]2Z/βU in the planar case and $\epsilon = 2^{\frac{1}{4}} a^{\frac{5}{2}}Z^{\frac{7}{4}}/\Omega U^{\frac{5}{2}}$ in the spherical case, and where Z is the enstrophy, U the r.m.s. velocity, and a the radius of the sphere. This result may help to explain why numerical simulations of unforced beta-plane turbulence (in which ε decreases in time) seem to evolve into a non-ergodic regime at large scales.
Resumo:
We develop spatial statistical models for stream networks that can estimate relationships between a response variable and other covariates, make predictions at unsampled locations, and predict an average or total for a stream or a stream segment. There have been very few attempts to develop valid spatial covariance models that incorporate flow, stream distance, or both. The application of typical spatial autocovariance functions based on Euclidean distance, such as the spherical covariance model, are not valid when using stream distance. In this paper we develop a large class of valid models that incorporate flow and stream distance by using spatial moving averages. These methods integrate a moving average function, or kernel, against a white noise process. By running the moving average function upstream from a location, we develop models that use flow, and by construction they are valid models based on stream distance. We show that with proper weighting, many of the usual spatial models based on Euclidean distance have a counterpart for stream networks. Using sulfate concentrations from an example data set, the Maryland Biological Stream Survey (MBSS), we show that models using flow may be more appropriate than models that only use stream distance. For the MBSS data set, we use restricted maximum likelihood to fit a valid covariance matrix that uses flow and stream distance, and then we use this covariance matrix to estimate fixed effects and make kriging and block kriging predictions.
Resumo:
We present a "boundary version" for theorems about minimality of volume and energy functionals on a spherical domain of an odd-dimensional Euclidean sphere.
Resumo:
Objective To evaluate the intra- and interobserver reliability of assessment of three-dimensional power Doppler (3D-PD) indices from single spherical samples of the placenta. Methods Women with singleton pregnancies at 2440 weeks' gestation were included. Three scans were independently performed by two observers; Observer 1 performed the first and third scan, intercalated by the scan of Observer 2. The observers independently analyzed the 3D-PD datasets that they had previously acquired using four different methods, each using a spherical sample: random sample extending from basal to chorionic plate; random sample with 2 cm3 of volume; directed sample to the region subjectively determined as containing more color Doppler signals extending from basal to chorionic plate; or directed sample with 2 cm3 of volume. The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were evaluated in each case. The observers were blinded to their own and each other's results. Additional evaluation was performed according to placental location: anterior, posterior and fundal or lateral. Intra- and interobserver reliability was assessed by intraclass correlation coefficients (ICC). Results Ninety-five pregnancies were included in the analysis. All three placental 3D-PD indices showed only weak to moderate reliability (ICC < 0.66 and ICC < 0.48, intra- and interobserver, respectively). The highest values of ICC were observed when using directed spherical samples from basal to chorionic plate. When analyzed by placental location, we found lower ICCs for lateral and fundal placentae compared to anterior and posterior ones. Conclusion Intra- and interobserver reliability of assessment of placental 3D-PD indices from single spherical samples in pregnant women greater than 24 weeks' gestation is poor to moderate, and clinical usefulness of these indices is likely to be limited. Copyright (c) 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
Time variable gravity fields, reflecting variations of mass distribution in the system Earth is one of the key parameters to understand the changing Earth. Mass variations are caused either by redistribution of mass in, on or above the Earth's surface or by geophysical processes in the Earth's interior. The first set of observations of monthly variations of the Earth gravity field was provided by the US/German GRACE satellite mission beginning in 2002. This mission is still providing valuable information to the science community. However, as GRACE has outlived its expected lifetime, the geoscience community is currently seeking successor missions in order to maintain the long time series of climate change that was begun by GRACE. Several studies on science requirements and technical feasibility have been conducted in the recent years. These studies required a realistic model of the time variable gravity field in order to perform simulation studies on sensitivity of satellites and their instrumentation. This was the primary reason for the European Space Agency (ESA) to initiate a study on ''Monitoring and Modelling individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites''. The goal of this interdisciplinary study was to create as realistic as possible simulated time variable gravity fields based on coupled geophysical models, which could be used in the simulation processes in a controlled environment. For this purpose global atmosphere, ocean, continental hydrology and ice models were used. The coupling was performed by using consistent forcing throughout the models and by including water flow between the different domains of the Earth system. In addition gravity field changes due to solid Earth processes like continuous glacial isostatic adjustment (GIA) and a sudden earthquake with co-seismic and post-seismic signals were modelled. All individual model results were combined and converted to gravity field spherical harmonic series, which is the quantity commonly used to describe the Earth's global gravity field. The result of this study is a twelve-year time-series of 6-hourly time variable gravity field spherical harmonics up to degree and order 180 corresponding to a global spatial resolution of 1 degree in latitude and longitude. In this paper, we outline the input data sets and the process of combining these data sets into a coherent model of temporal gravity field changes. The resulting time series was used in some follow-on studies and is available to anybody interested.
Resumo:
An experimental investigation of high-enthalpy flow over a toroidal ballute (balloon/parachute) was conducted in an expansion tube facility. The ballute, proposed for use in a number of future aerocapture missions, involves the deployment of a large toroidal-shaped inflatable parachute behind a space vehicle to generate drag on passing through a planetary atmosphere, thus, placing the spacecraft in orbit. A configuration consisting of a spherical spacecraft, followed by a toroid, was tested in a superorbital facility. Measurements at moderate-enthalpy conditions (15-20 MJ/kg) in nitrogen and carbon dioxide showed peak heat transfer rates of around 20 MW/m(2) on the toroid. At higher enthalpies (>50 MJ/kg) in nitrogen, carbon dioxide, and a hydrogen-neon mixture, heat transfer rates above 100 MW/m(2) were observed. Imaging using near-resonant holographic interferometry showed that the flows were steady except when the opening of the toroid was blocked.
Resumo:
Background. To evaluate the haemodynamic features of young healthy myopes and emmetropes, in order to ascertain the perfusion profile of human myopia and its relationship with axial length prior to reaching a degenerative state. Methods The retrobulbar, microretinal and pulsatile ocular blood flow (POBF) of one eye of each of twenty-two high myopes (N=22, mean spherical equivalent (MSE) =-5.00D), low myopes (N=22, MSE-1.00 to-4.50D) and emmetropes (N=22, MSE±0.50D) was analyzed using color Doppler Imaging, Heidelberg retinal flowmetry and ocular blood flow analyser (OBF) respectively. Intraocular pressure, axial length (AL), systemic blood pressure, and body mass index were measured. Results. When compared to the emmetropes and low myopes, the AL was greater in high myopia (p<0.0001). High myopes showed higher central retinal artery resistance index (CRA RI) (p=0.004), higher peak systolic to end diastolic velocities ratio (CRA ratio) and lower end diastolic velocity (CRA EDv) compared to low myopes (p=0.014, p=0.037). Compared to emmetropes, high myopes showed lower OBFamplitude (OBFa) (p=0.016). The POBF correlated significantly with the systolic and diastolic blood velocities of the CRA (p=0.016, p=0.036). MSE and AL correlated negatively with OBFa (p=0.03, p=0.003), OBF volume (p=0.02, p<0.001), POBF (p=0.01, p<0.001) and positively with CRA RI (p=0.007, p=0.05). Conclusion. High myopes exhibited significantly reduced pulse amplitude and CRA blood velocity, the first of which may be due to an OBF measurement artefact or real decreased ocular blood flow pulsatility. Axial length and refractive error correlated moderately with the ocular pulse and with the resistance index of the CRA, which in turn correlated amongst themselves. It is hypothesized that the compromised pulsatile and CRA haemodynamics observed in young healthy myopes is an early feature of the decrease in ocular blood flow reported in pathological myopia. Such vascular features would increase the susceptibility for vascular and age-related eye diseases.
Resumo:
A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.
Resumo:
The electrostatic model for osmotic flow across a porous membrane in our previous study (Akinaga et al. 2008)" was extended to include the streaming potential, for solutes and pores of like charge and fixed surface charge densities. The magnitude of the streaming potential was determined to satisfy zero current condition along the pore axis. It was found that the streaming potential affects the velocity profiles of the pressure driven flow as well as the osmotic flow through the pore, and decreases their flow rates, particularly in the case of large Debye length relative to the pore radius, whereas it has little effect on the reflection coefficients of spherical solutes through cylindrical pores.
Resumo:
An electrostatic model is developed for osmotic flow across a layer consisting of identical circular cylinders with a fixed surface charge, aligned parallel to each other so as to form an ordered hexagonal arrangement. The expression of the osmotic reflection coefficient is derived for spherical solutes with a fixed surface charge suspended in an electrolyte, based on low-Reynolds-number hydrodynamics and a continuum, point-charge description of the electric double layers. The repulsive electrostatic interaction between the surface charges with the same sign on the solute and the cylinders is shown to increase the exclusion region of solute from the cylinder surface, which enhances the osmotic flow. Applying the present model to the study of osmotic flow across the endothelial surface glycocalyx of capillary walls has revealed that this electrostatic model could account well for the reflection coefficients measured for charged macromolecules, such as albumin, in the physiological range of charge density and ion concentration.
Resumo:
An electrostatic model for osmotic flow through circular cylindrical pores is developed to describe the reflection coefficient for the membrane transport in the presence of surface charges on the pore wall and the solute. For a spherical solute placed at an arbitrary radial position in the pore, the electrical potential was computed by a spectral element method applied to the Poisson-Boltzmann equation together with the condition of electrical neutrality. The interaction energy between the surface charges was used to estimate the osmotic reflection coefficient. The proposed model predicts that even for a small Debye length compared to the pore radius, the repulsive electrostatic interaction between the surface charges could significantly increase the osmotic flow through the pore.
Resumo:
Longitudinal librations represent oscillations about the axis of a rotating axisymmetric fluid-filled cavity. An analytical theory is developed for the case of a spherical cavity in the limit when the libration frequency is small in comparison with the rotation rate, but large in comparison with the inverse of the spin-up time. It is shown that longitudinal librations create a steady zonal flow through the nonlinear advection in the Ekman layers. The theory can be applied to laboratory experiments as well as to solid planets and satellites with a liquid core. Copyright © Cambridge University Press 2010.
Resumo:
The feasibility of using a small-scale avalanche tester to measure the flow properties of pharmaceutical lactose powders was examined. The modes of behaviour observed in larger systems were displayed and showed a clear distinction between angular, free-flowing particles and more spherical particles of similar flow characteristics. Angular Lactohale LH100 particles showed slumping behaviour at a rotational frequency of 0.33Hz which disappeared at higher frequencies. Spherical lactose powder with a similar flow function to LH100 only showed rolling behaviour under the same conditions, as did more cohesive powders LH200 and LH300. Further investigation of the LH100 data using Fast Fourier analysis showed that the slumping frequency was 1/10th of the rotational frequency.
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).