986 resultados para Spatial modeling
Resumo:
We present a generic spatially explicit modeling framework to estimate carbon emissions from deforestation (INPE-EM). The framework incorporates the temporal dynamics related to the deforestation process and accounts for the biophysical and socioeconomic heterogeneity of the region under study. We build an emission model for the Brazilian Amazon combining annual maps of new clearings, four maps of biomass, and a set of alternative parameters based on the recent literature. The most important results are as follows: (a) Using different biomass maps leads to large differences in estimates of emission; for the entire region of the Brazilian Amazon in the last decade, emission estimates of primary forest deforestation range from 0.21 to 0.26 similar to Pg similar to C similar to yr-1. (b) Secondary vegetation growth presents a small impact on emission balance because of the short duration of secondary vegetation. In average, the balance is only 5% smaller than the primary forest deforestation emissions. (c) Deforestation rates decreased significantly in the Brazilian Amazon in recent years, from 27 similar to Mkm2 in 2004 to 7 similar to Mkm2 in 2010. INPE-EM process-based estimates reflect this decrease even though the agricultural frontier is moving to areas of higher biomass. The decrease is slower than a non-process instantaneous model would estimate as it considers residual emissions (slash, wood products, and secondary vegetation). The average balance, considering all biomass, decreases from 0.28 in 2004 to 0.15 similar to Pg similar to C similar to yr-1 in 2009; the non-process model estimates a decrease from 0.33 to 0.10 similar to Pg similar to C similar to yr-1. We conclude that the INPE-EM is a powerful tool for representing deforestation-driven carbon emissions. Biomass estimates are still the largest source of uncertainty in the effective use of this type of model for informing mechanisms such as REDD+. The results also indicate that efforts to reduce emissions should focus not only on controlling primary forest deforestation but also on creating incentives for the restoration of secondary forests.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper analyzes land use change in Rio Claro City and its surroundings, located in the southeastern state of Sao Paulo, in the period from 1988 to 1995, using air-borne digital imagery and a cellular automata model. The simulation experiment was carried out in the Dinamica EGO platform and the results revealed a constrained urban sprawl, resulting from both the densification of residential areas implemented in previous years and the economic recession that led to an internal financial crisis in Brazil during the early 1990s. The simulation outputs were validated using a multi-resolution procedure based on a fuzzy similarity index and showed a satisfactory fitness in relation to the historical reference data. © 2013 IEEE.
Resumo:
Background: Cancer is the second leading cause of death in Argentina, and there is little knowledge about its incidence. The first study based on population-based cancer registry described spatial incidence and indicated that there existed at least county-level aggregation. The aim of the present work is to model the incidence patterns for the most incidence cancer in Córdoba Province, Argentina, using information from the Córdoba Cancer Registry by performing multilevel mixed model approach to deal with dependence and unobserved heterogeneity coming from the geo-reference cancer occurrence. Methods: Standardized incidence rates (world standard population) (SIR) by sex based on 5-year age groups were calculated for 109 districts nested on 26 counties for the most incidence cancers in Cordoba using 2004 database. A Poisson twolevel random effect model representing unobserved heterogeneity between first level-districts and second level-counties was fitted to assess the spatial distribution of the overall and site specific cancer incidence rates. Results: SIR cancer at Córdoba province shown an average of 263.53±138.34 and 200.45±98.30 for men and women, respectively. Considering the ratio site specific mean SIR to the total mean, breast cancer ratio was 0.25±0.19, prostate cancer ratio was 0.12±0.10 and lower values for lung and colon cancer for both sexes. The Poisson two-level random intercepts model fitted for SIR data distributed with overdispersion shown significant hierarchical structure for the cancer incidence distribution. Conclusions: a strong spatial-nested effect for the cancer incidence in Córdoba was observed and will help to begin the study of the factors associated with it.
Resumo:
The analysis of spatial relations among objects in an image is an important vision problem that involves both shape analysis and structural pattern recognition. In this paper, we propose a new approach to characterize the spatial relation along, an important feature of spatial configurations in space that has been overlooked in the literature up to now. We propose a mathematical definition of the degree to which an object A is along an object B, based on the region between A and B and a degree of elongatedness of this region. In order to better fit the perceptual meaning of the relation, distance information is included as well. In order to cover a more wide range of potential applications, both the crisp and fuzzy cases are considered. In the crisp case, the objects are represented in terms of 2D regions or ID contours, and the definition of the alongness between them is derived from a visibility notion and from the region between the objects. However, the computational complexity of this approach leads us to the proposition of a new model to calculate the between region using the convex hull of the contours. On the fuzzy side, the region-based approach is extended. Experimental results obtained using synthetic shapes and brain structures in medical imaging corroborate the proposed model and the derived measures of alongness, thus showing that they agree with the common sense. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The advances that have been characterizing spatial econometrics in recent years are mostly theoretical and have not found an extensive empirical application yet. In this work we aim at supplying a review of the main tools of spatial econometrics and to show an empirical application for one of the most recently introduced estimators. Despite the numerous alternatives that the econometric theory provides for the treatment of spatial (and spatiotemporal) data, empirical analyses are still limited by the lack of availability of the correspondent routines in statistical and econometric software. Spatiotemporal modeling represents one of the most recent developments in spatial econometric theory and the finite sample properties of the estimators that have been proposed are currently being tested in the literature. We provide a comparison between some estimators (a quasi-maximum likelihood, QML, estimator and some GMM-type estimators) for a fixed effects dynamic panel data model under certain conditions, by means of a Monte Carlo simulation analysis. We focus on different settings, which are characterized either by fully stable or quasi-unit root series. We also investigate the extent of the bias that is caused by a non-spatial estimation of a model when the data are characterized by different degrees of spatial dependence. Finally, we provide an empirical application of a QML estimator for a time-space dynamic model which includes a temporal, a spatial and a spatiotemporal lag of the dependent variable. This is done by choosing a relevant and prolific field of analysis, in which spatial econometrics has only found limited space so far, in order to explore the value-added of considering the spatial dimension of the data. In particular, we study the determinants of cropland value in Midwestern U.S.A. in the years 1971-2009, by taking the present value model (PVM) as the theoretical framework of analysis.
Resumo:
Les besoins toujours croissants en terme de transfert de données numériques poussent au développement de nouvelles technologies pour accroître la capacité des réseaux, notamment en ce qui concerne les réseaux de fibre optique. Parmi ces nouvelles technologies, le multiplexage spatial permet de multiplier la capacité des liens optiques actuels. Nous nous intéressons particulièrement à une forme de multiplexage spatial utilisant le moment cinétique orbital de la lumière comme base orthogonale pour séparer un certain nombre de canaux. Nous présentons d’abord les notions d’électromagnétisme et de physique nécessaires à la compréhension des développements ultérieurs. Les équations de Maxwell sont dérivées afin d’expliquer les modes scalaires et vectoriels de la fibre optique. Nous présentons également d’autres propriétés modales, soit la coupure des modes, et les indices de groupe et de dispersion. La notion de moment cinétique orbital est ensuite introduite, avec plus particulièrement ses applications dans le domaine des télécommunications. Dans une seconde partie, nous proposons la carte modale comme un outil pour aider au design des fibres optiques à quelques modes. Nous développons la solution vectorielle des équations de coupure des modes pour les fibres en anneau, puis nous généralisons ces équations pour tous les profils de fibres à trois couches. Enfin, nous donnons quelques exemples d’application de la carte modale. Dans la troisième partie, nous présentons des designs de fibres pour la transmission des modes avec un moment cinétique orbital. Les outils développés dans la seconde partie sont utilisés pour effectuer ces designs. Un premier design de fibre, caractérisé par un centre creux, est étudié et démontré. Puis un second design, une famille de fibres avec un profil en anneau, est étudié. Des mesures d’indice effectif et d’indice de groupe sont effectuées sur ces fibres. Les outils et les fibres développés auront permis une meilleure compréhension de la transmission dans la fibre optique des modes ayant un moment cinétique orbital. Nous espérons que ces avancements aideront à développer prochainement des systèmes de communications performants utilisant le multiplexage spatial.
Resumo:
Water regimes in the Brazilian Cerrados are sensitive to climatological disturbances and human intervention. The risk that critical water-table levels are exceeded over long periods of time can be estimated by applying stochastic methods in modeling the dynamic relationship between water levels and driving forces such as precipitation and evapotranspiration. In this study, a transfer function-noise model, the so called PIRFICT-model, is applied to estimate the dynamic relationship between water-table depth and precipitation surplus/deficit in a watershed with a groundwater monitoring scheme in the Brazilian Cerrados. Critical limits were defined for a period in the Cerrados agricultural calendar, the end of the rainy season, when extremely shallow levels (< 0.5-m depth) can pose a risk to plant health and machinery before harvesting. By simulating time-series models, the risk of exceeding critical thresholds during a continuous period of time (e.g. 10 days) is described by probability levels. These simulated probabilities were interpolated spatially using universal kriging, incorporating information related to the drainage basin from a digital elevation model. The resulting map reduced model uncertainty. Three areas were defined as presenting potential risk at the end of the rainy season. These areas deserve attention with respect to water-management and land-use planning.
Resumo:
The objective of this study was to estimate the spatial distribution of work accident risk in the informal work market in the urban zone of an industrialized city in southeast Brazil and to examine concomitant effects of age, gender, and type of occupation after controlling for spatial risk variation. The basic methodology adopted was that of a population-based case-control study with particular interest focused on the spatial location of work. Cases were all casual workers in the city suffering work accidents during a one-year period; controls were selected from the source population of casual laborers by systematic random sampling of urban homes. The spatial distribution of work accidents was estimated via a semiparametric generalized additive model with a nonparametric bidimensional spline of the geographical coordinates of cases and controls as the nonlinear spatial component, and including age, gender, and occupation as linear predictive variables in the parametric component. We analyzed 1,918 cases and 2,245 controls between 1/11/2003 and 31/10/2004 in Piracicaba, Brazil. Areas of significantly high and low accident risk were identified in relation to mean risk in the study region (p < 0.01). Work accident risk for informal workers varied significantly in the study area. Significant age, gender, and occupational group effects on accident risk were identified after correcting for this spatial variation. A good understanding of high-risk groups and high-risk regions underpins the formulation of hypotheses concerning accident causality and the development of effective public accident prevention policies.
Resumo:
Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing systems in such a way that the scales of the independent systems resonate. This produces superimposed patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes, and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of the systems becomes fixed after some time and serves as a source of morphogens for the other system. This mechanism produces patterns very similar to the pigmentation patterns observed in different species of stingrays and other fishes. The biological mechanisms that support the realization of this model are discussed.
Resumo:
Southeastern Brazil has seen dramatic landscape modifications in recent decades, due to expansion of agriculture and urban areas; these changes have influenced the distribution and abundance of vertebrates. We developed predictive models of ecological and spatial distributions of capybaras (Hydrochoerus hydrochaeris) using ecological niche modeling. Most Occurrences of capybaras were in flat areas with water bodies Surrounded by sugarcane and pasture. More than 75% of the Piracicaba River basin was estimated as potentially habitable by capybara. The models had low omission error (2.3-3.4%), but higher commission error (91.0-98.5%); these ""model failures"" seem to be more related to local habitat characteristics than to spatial ones. The potential distribution of capybaras in the basin is associated with anthropogenic habitats, particularly with intensive land use for agriculture.
Resumo:
This article presents a statistical model of agricultural yield data based on a set of hierarchical Bayesian models that allows joint modeling of temporal and spatial autocorrelation. This method captures a comprehensive range of the various uncertainties involved in predicting crop insurance premium rates as opposed to the more traditional ad hoc, two-stage methods that are typically based on independent estimation and prediction. A panel data set of county-average yield data was analyzed for 290 counties in the State of Parana (Brazil) for the period of 1990 through 2002. Posterior predictive criteria are used to evaluate different model specifications. This article provides substantial improvements in the statistical and actuarial methods often applied to the calculation of insurance premium rates. These improvements are especially relevant to situations where data are limited.
Resumo:
Molecular modeling methodologies were applied to perform preliminary studies concerning the release of active agents from potentially antichagasic and antileishmanial dendrimer prodrugs. The dendrimer was designed having myo-inositol as a core, L-malic acid as a spacer group, and hydroxymethylnitrofurazone (NFOH), 3-hydroxyflavone or quercetin, as active compounds. Each dendrimer presented a particular behavior concerning to the following investigated properties: spatial hindrance, map of electrostatic potential (MEP), and the lowest unoccupied molecular orbital energy (E(LUMO)). Additionally, the findings suggested that the carbonyl group next to the active agent seems to be the most promising ester breaking point. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Land related information about the Earth's surface is commonIJ found in two forms: (1) map infornlation and (2) satellite image da ta. Satellite imagery provides a good visual picture of what is on the ground but complex image processing is required to interpret features in an image scene. Increasingly, methods are being sought to integrate the knowledge embodied in mop information into the interpretation task, or, alternatively, to bypass interpretation and perform biophysical modeling directly on derived data sources. A cartographic modeling language, as a generic map analysis package, is suggested as a means to integrate geographical knowledge and imagery in a process-oriented view of the Earth. Specialized cartographic models may be developed by users, which incorporate mapping information in performing land classification. In addition, a cartographic modeling language may be enhanced with operators suited to processing remotely sensed imagery. We demonstrate the usefulness of a cartographic modeling language for pre-processing satellite imagery, and define two nerv cartographic operators that evaluate image neighborhoods as post-processing operations to interpret thematic map values. The language and operators are demonstrated with an example image classification task.