992 resultados para Spatial databases
Resumo:
Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.
Resumo:
Large amounts of information can be overwhelming and costly to process, especially when transmitting data over a network. A typical modern Geographical Information System (GIS) brings all types of data together based on the geographic component of the data and provides simple point-and-click query capabilities as well as complex analysis tools. Querying a Geographical Information System, however, can be prohibitively expensive due to the large amounts of data which may need to be processed. Since the use of GIS technology has grown dramatically in the past few years, there is now a need more than ever, to provide users with the fastest and least expensive query capabilities, especially since an approximated 80 % of data stored in corporate databases has a geographical component. However, not every application requires the same, high quality data for its processing. In this paper we address the issues of reducing the cost and response time of GIS queries by preaggregating data by compromising the data accuracy and precision. We present computational issues in generation of multi-level resolutions of spatial data and show that the problem of finding the best approximation for the given region and a real value function on this region, under a predictable error, in general is "NP-complete.
Resumo:
Existing theories of semantic cognition propose models of cognitive processing occurring in a conceptual space, where ‘meaning’ is derived from the spatial relationships between concepts’ mapped locations within the space. Information visualisation is a growing area of research within the field of information retrieval, and methods for presenting database contents visually in the form of spatial data management systems (SDMSs) are being developed. This thesis combined these two areas of research to investigate the benefits associated with employing spatial-semantic mapping (documents represented as objects in two- and three-dimensional virtual environments are proximally mapped dependent on the semantic similarity of their content) as a tool for improving retrieval performance and navigational efficiency when browsing for information within such systems. Positive effects associated with the quality of document mapping were observed; improved retrieval performance and browsing behaviour were witnessed when mapping was optimal. It was also shown using a third dimension for virtual environment (VE) presentation provides sufficient additional information regarding the semantic structure of the environment that performance is increased in comparison to using two-dimensions for mapping. A model that describes the relationship between retrieval performance and browsing behaviour was proposed on the basis of findings. Individual differences were not found to have any observable influence on retrieval performance or browsing behaviour when mapping quality was good. The findings from this work have implications for both cognitive modelling of semantic information, and for designing and testing information visualisation systems. These implications are discussed in the conclusions of this work.
Resumo:
With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.
Resumo:
MEGAGEO - Moving megaliths in the Neolithic is a project that intends to find the provenience of lithic materials in the construction of tombs. A multidisciplinary approach is carried out, with researchers from several of the knowledge fields involved. This work presents a spatial data warehouse specially developed for this project that comprises information from national archaeological databases, geographic and geological information and new geochemical and petrographic data obtained during the project. The use of the spatial data warehouse proved to be essential in the data analysis phase of the project. The Redondo Area is presented as a case study for the application of the spatial data warehouse to analyze the relations between geochemistry, geology and the tombs in this area.
Resumo:
We perform variational studies of the interaction-localization problem to describe the interaction-induced renormalizations of the effective (screened) random potential seen by quasiparticles. Here we present results of careful finite-size scaling studies for the conductance of disordered Hubbard chains at half-filling and zero temperature. While our results indicate that quasiparticle wave functions remain exponentially localized even in the presence of moderate to strong repulsive interactions, we show that interactions produce a strong decrease of the characteristic conductance scale g^{*} signaling the crossover to strong localization. This effect, which cannot be captured by a simple renormalization of the disorder strength, instead reflects a peculiar non-Gaussian form of the spatial correlations of the screened disordered potential, a hitherto neglected mechanism to dramatically reduce the impact of Anderson localization (interference) effects.
Resumo:
Onion (Allium cepa) is one of the most cultivated and consumed vegetables in Brazil and its importance is due to the large laborforce involved. One of the main pests that affect this crop is the Onion Thrips (Thrips tabaci), but the spatial distribution of this insect, although important, has not been considered in crop management recommendations, experimental planning or sampling procedures. Our purpose here is to consider statistical tools to detect and model spatial patterns of the occurrence of the onion thrips. In order to characterize the spatial distribution pattern of the Onion Thrips a survey was carried out to record the number of insects in each development phase on onion plant leaves, on different dates and sample locations, in four rural properties with neighboring farms under different infestation levels and planting methods. The Mantel randomization test proved to be a useful tool to test for spatial correlation which, when detected, was described by a mixed spatial Poisson model with a geostatistical random component and parameters allowing for a characterization of the spatial pattern, as well as the production of prediction maps of susceptibility to levels of infestation throughout the area.
Resumo:
Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This enhancement improved performance from 80 to 91% for redundant GDW schemas.
Resumo:
OBJECTIVE: To estimate the spatial intensity of urban violence events using wavelet-based methods and emergency room data. METHODS: Information on victims attended at the emergency room of a public hospital in the city of São Paulo, Southeastern Brazil, from January 1, 2002 to January 11, 2003 were obtained from hospital records. The spatial distribution of 3,540 events was recorded and a uniform random procedure was used to allocate records with incomplete addresses. Point processes and wavelet analysis technique were used to estimate the spatial intensity, defined as the expected number of events by unit area. RESULTS: Of all georeferenced points, 59% were accidents and 40% were assaults. There is a non-homogeneous spatial distribution of the events with high concentration in two districts and three large avenues in the southern area of the city of São Paulo. CONCLUSIONS: Hospital records combined with methodological tools to estimate intensity of events are useful to study urban violence. The wavelet analysis is useful in the computation of the expected number of events and their respective confidence bands for any sub-region and, consequently, in the specification of risk estimates that could be used in decision-making processes for public policies.
Resumo:
In children with Duchenne muscular dystrophy, color vision losses have been related to dystrophin deletions downstream of exon 30, which affect a dystrophin isoform, Dp260, present in the retina. To further evaluate visual function in DMD children, we measured spatial, temporal, and chromatic red-green and blue-yellow contrast sensitivity in two groups of DMD children with gene deletion downstream and upstream of exon 30. Psychophysical spatial contrast sensitivity was measured for low, middle, and high spatial frequencies with achromatic gratings and for low and middle frequencies with red-green and blue-yellow chromatic gratings. Temporal contrast sensitivity was also measured with achromatic stimuli. A reduction in sensitivity at all spatial luminance contrasts was found for the DMD patients with deletion downstream of exon 30. Similar results were found for temporal luminance contrast sensitivity. Red-green chromatic contrast sensitivity was reduced in DMD children with deletion downstream of exon 30, whereas blue-yellow chromatic contrast sensitivity showed no significant differences. We conclude that visual function is impaired in DMD children. Furthermore, we report a genotype-phenotype relationship because the visual impairment occurred in children with deletion downstream but not upstream of exon 30, affecting the retinal isoform of dystrophin Dp260.
Resumo:
Structure of intertidal and subtidal benthic macrofauna in the northeastern region of Todos os Santos Bay (TSB), northeast Brazil, was investigated during a period of two years. Relationships with environmental parameters were studied through uni-and multivariate statistical analyses, and the main distributional patterns shown to be especially related to sediment type and content of organic fractions (Carbon, Nitrogen, Phosphorus), on both temporal and spatial scales. Polychaete annelids accounted for more than 70% of the total fauna and showed low densities, species richness and diversity, except for the area situated on the reef banks. These banks constitute a peculiar environment in relation to the rest of the region by having coarse sediments poor in organic matter and rich in biodetritic carbonates besides an abundant and diverse fauna. The intertidal region and the shallower area nearer to the oil refinery RLAM, with sediments composed mainly of fine sand, seem to constitute an unstable system with few highly dominant species, such as Armandia polyophthalma and Laeonereis acuta. In the other regions of TSB, where muddy bottoms predominated, densities and diversity were low, especially in the stations near the refinery. Here the lowest values of the biological indicators occurred together with the highest organic compound content. In addition, the nearest sites (stations 4 and 7) were sometimes azoic. The adjacent Caboto, considered as a control area at first, presented low density but intermediate values of species diversity, which indicates a less disturbed environment in relation to the pelitic infralittoral in front of the refinery. The results of the ordination analyses evidenced five homogeneous groups of stations (intertidal; reef banks; pelitic infralittoral; mixed sediments; Caboto) with different specific patterns, a fact which seems to be mainly related to granulometry and chemical sediment characteristics.
Resumo:
The aim of this study was to analyze the distribution and abundance of the fish fauna of Palmas bay on Anchieta Island in southeastern Brazil. Specimens were caught in the summer and winter of 1992, using an otter trawl at three locations in the bay. The specimens were caught in both the nighttime and daytime. Data on the water temperature and salinity were recorded for the characterization of the predominant water mass in the region, and sediment samples were taken for granulometric analysis. A total of 7 656 specimens (79 species), with a total weight of approximately 300 kg, were recorded. The most abundant species were Eucinostomus argenteus, Ctenosciaena gracilicirrhus, Haemulon steindachneri, Eucinostomus gula and Diapterus rhombeus, which together accounted for more than 73% of the sample. In general, the ecological indices showed no differences in the composition of species for the abiotic variables analyzed. The multivariate analysis showed that the variations in the distribution of the fish fauna were mainly associated with intra-annual differences in temperature and salinity, resulting from the presence of South Atlantic Central Water (SACW) in the area during the summer. The analysis also showed an association with the type of bottom and a lesser association with respect to the night/day periods.
Resumo:
In the southern region of Mato Grosso do Sul state, Brazil, a foot-and-mouth disease (FMD) epidemic started in September 2005. A total of 33 outbreaks were detected and 33,741 FMD-susceptible animals were slaughtered and destroyed. There were no reports of FMD cases in other species than bovines. Based on the data of this epidemic, it was carried out an analysis using the K-function and it was observed spatial clustering of outbreaks within a range of 25km. This observation may be related to the dynamics of foot-and-mouth disease spread and to the measures undertaken to control the disease dissemination. The control measures were effective once the disease did not spread to farms more than 47 km apart from the initial outbreaks.
Resumo:
A susceptible-infective-recovered (SIR) epidemiological model based on probabilistic cellular automaton (PCA) is employed for simulating the temporal evolution of the registered cases of chickenpox in Arizona, USA, between 1994 and 2004. At each time step, every individual is in one of the states S, I, or R. The parameters of this model are the probabilities of each individual (each cell forming the PCA lattice ) passing from a state to another state. Here, the values of these probabilities are identified by using a genetic algorithm. If nonrealistic values are allowed to the parameters, the predictions present better agreement with the historical series than if they are forced to present realistic values. A discussion about how the size of the PCA lattice affects the quality of the model predictions is presented. Copyright (C) 2009 L. H. A. Monteiro et al.
Resumo:
Background: Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results: E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions: There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption.