888 resultados para Sparse component analysis
Resumo:
DNA microarrays provide a huge amount of data and require therefore dimensionality reduction methods to extract meaningful biological information. Independent Component Analysis (ICA) was proposed by several authors as an interesting means. Unfortunately, experimental data are usually of poor quality- because of noise, outliers and lack of samples. Robustness to these hurdles will thus be a key feature for an ICA algorithm. This paper identifies a robust contrast function and proposes a new ICA algorithm. © 2007 IEEE.
Resumo:
Copyright © (2014) by the International Machine Learning Society (IMLS) All rights reserved. Classical methods such as Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) are ubiquitous in statistics. However, these techniques are only able to reveal linear re-lationships in data. Although nonlinear variants of PCA and CCA have been proposed, these are computationally prohibitive in the large scale. In a separate strand of recent research, randomized methods have been proposed to construct features that help reveal nonlinear patterns in data. For basic tasks such as regression or classification, random features exhibit little or no loss in performance, while achieving drastic savings in computational requirements. In this paper we leverage randomness to design scalable new variants of nonlinear PCA and CCA; our ideas extend to key multivariate analysis tools such as spectral clustering or LDA. We demonstrate our algorithms through experiments on real- world data, on which we compare against the state-of-the-art. A simple R implementation of the presented algorithms is provided.
Resumo:
EPSRC, the European Community IST FP6 Integrated, etc
Resumo:
Mammographic mass detection is an important task for the early diagnosis of breast cancer. However, it is difficult to distinguish masses from normal regions because of their abundant morphological characteristics and ambiguous margins. To improve the mass detection performance, it is essential to effectively preprocess mammogram to preserve both the intensity distribution and morphological characteristics of regions. In this paper, morphological component analysis is first introduced to decompose a mammogram into a piecewise-smooth component and a texture component. The former is utilized in our detection scheme as it effectively suppresses both structural noises and effects of blood vessels. Then, we propose two novel concentric layer criteria to detect different types of suspicious regions in a mammogram. The combination is evaluated based on the Digital Database for Screening Mammography, where 100 malignant cases and 50 benign cases are utilized. The sensitivity of the proposed scheme is 99% in malignant, 88% in benign, and 95.3% in all types of cases. The results show that the proposed detection scheme achieves satisfactory detection performance and preferable compromises between sensitivity and false positive rates.
Resumo:
Heart disease is one of the main factor causing death in the developed countries. Over several decades, variety of electronic and computer technology have been developed to assist clinical practices for cardiac performance monitoring and heart disease diagnosis. Among these methods, Ballistocardiography (BCG) has an interesting feature that no electrodes are needed to be attached to the body during the measurement. Thus, it is provides a potential application to asses the patients heart condition in the home. In this paper, a comparison is made for two neural networks based BCG signal classification models. One system uses a principal component analysis (PCA) method, and the other a discrete wavelet transform, to reduce the input dimensionality. It is indicated that the combined wavelet transform and neural network has a more reliable performance than the combined PCA and neural network system. Moreover, the wavelet transform requires no prior knowledge of the statistical distribution of data samples and the computation complexity and training time are reduced.
Resumo:
In this paper, we present a Statistical Shape Model for Human Figure Segmentation in gait sequences. Point Distribution Models (PDM) generally use Principal Component analysis (PCA) to describe the main directions of variation in the training set. However, PCA assumes a number of restrictions on the data that do not always hold. In this work, we explore the potential of Independent Component Analysis (ICA) as an alternative shape decomposition to the PDM-based Human Figure Segmentation. The shape model obtained enables accurate estimation of human figures despite segmentation errors in the input silhouettes and has really good convergence qualities.
Resumo:
This paper emerged from work supported by EPSRC grant GR/S84354/01 and proposes a method of determining principal curves, using spline functions, in principal component analysis (PCA) for the representation of non-linear behaviour in process monitoring. Although principal curves are well established, they are difficult to implement in practice if a large number of variables are analysed. The significant contribution of this paper is that the proposed method has minimal complexity, assuming simple spline geometry, thus enabling efficient computation. The paper provides a foundation for further work where multiple curves may be required to represent underlying non-linear information in complex data.
Resumo:
This paper presents a new technique for the detectionof islanding conditions in electrical power systems. This problem isespecially prevalent in systems with significant penetrations of distributedrenewable generation. The proposed technique is based onthe application of principal component analysis (PCA) to data setsof wide-area frequency measurements, recorded by phasor measurementunits. The PCA approach was able to detect islandingaccurately and quickly when compared with conventional RoCoFtechniques, as well as with the frequency difference and change-ofangledifference methods recently proposed in the literature. Thereliability and accuracy of the proposed PCA approach is demonstratedby using a number of test cases, which consider islandingand nonislanding events. The test cases are based on real data,recorded from several phasor measurement units located in theU.K. power system.
Resumo:
Reducing wafer metrology continues to be a major target in semiconductor manufacturing efficiency initiatives due to it being a high cost, non-value added operation that impacts on cycle-time and throughput. However, metrology cannot be eliminated completely given the important role it plays in process monitoring and advanced process control. To achieve the required manufacturing precision, measurements are typically taken at multiple sites across a wafer. The selection of these sites is usually based on a priori knowledge of wafer failure patterns and spatial variability with additional sites added over time in response to process issues. As a result, it is often the case that in mature processes significant redundancy can exist in wafer measurement plans. This paper proposes a novel methodology based on Forward Selection Component Analysis (FSCA) for analyzing historical metrology data in order to determine the minimum set of wafer sites needed for process monitoring. The paper also introduces a virtual metrology (VM) based approach for reconstructing the complete wafer profile from the optimal sites identified by FSCA. The proposed methodology is tested and validated on a wafer manufacturing metrology dataset. © 2012 IEEE.
Automatic Detection of Process Instabilities in Wastewater Treatment by Principal Component Analysis