872 resultados para Sparse Matrix


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a fast part-based subspace selection algorithm, termed the binary sparse nonnegative matrix factorization (B-SNMF). Both the training process and the testing process of B-SNMF are much faster than those of binary principal component analysis (B-PCA). Besides, B-SNMF is more robust to occlusions in images. Experimental results on face images demonstrate the effectiveness and the efficiency of the proposed B-SNMF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Miralls deformables més i més grans, amb cada cop més actuadors estan sent utilitzats actualment en aplicacions d'òptica adaptativa. El control dels miralls amb centenars d'actuadors és un tema de gran interès, ja que les tècniques de control clàssiques basades en la seudoinversa de la matriu de control del sistema es tornen massa lentes quan es tracta de matrius de dimensions tan grans. En aquesta tesi doctoral es proposa un mètode per l'acceleració i la paral.lelitzacó dels algoritmes de control d'aquests miralls, a través de l'aplicació d'una tècnica de control basada en la reducció a zero del components més petits de la matriu de control (sparsification), seguida de l'optimització de l'ordenació dels accionadors de comandament atenent d'acord a la forma de la matriu, i finalment de la seva posterior divisió en petits blocs tridiagonals. Aquests blocs són molt més petits i més fàcils de fer servir en els càlculs, el que permet velocitats de càlcul molt superiors per l'eliminació dels components nuls en la matriu de control. A més, aquest enfocament permet la paral.lelització del càlcul, donant una com0onent de velocitat addicional al sistema. Fins i tot sense paral. lelització, s'ha obtingut un augment de gairebé un 40% de la velocitat de convergència dels miralls amb només 37 actuadors, mitjançant la tècnica proposada. Per validar això, s'ha implementat un muntatge experimental nou complet , que inclou un modulador de fase programable per a la generació de turbulència mitjançant pantalles de fase, i s'ha desenvolupat un model complert del bucle de control per investigar el rendiment de l'algorisme proposat. Els resultats, tant en la simulació com experimentalment, mostren l'equivalència total en els valors de desviació després de la compensació dels diferents tipus d'aberracions per als diferents algoritmes utilitzats, encara que el mètode proposat aquí permet una càrrega computacional molt menor. El procediment s'espera que sigui molt exitós quan s'aplica a miralls molt grans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays problem of solving sparse linear systems over the field GF(2) remain as a challenge. The popular approach is to improve existing methods such as the block Lanczos method (the Montgomery method) and the Wiedemann-Coppersmith method. Both these methods are considered in the thesis in details: there are their modifications and computational estimation for each process. It demonstrates the most complicated parts of these methods and gives the idea how to improve computations in software point of view. The research provides the implementation of accelerated binary matrix operations computer library which helps to make the progress steps in the Montgomery and in the Wiedemann-Coppersmith methods faster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data on the analysis - the analysis change that would occur by leaving one observation out, and the effective information content (degrees of freedom for signal) in any sub-set of the analysed data. In this paper, the corresponding concepts have been derived in the context of linear statistical data assimilation in numerical weather prediction. An approximate method to compute the diagonal elements of the influence matrix (the self-sensitivities) has been developed for a large-dimension variational data assimilation system (the four-dimensional variational system of the European Centre for Medium-Range Weather Forecasts). Results show that, in the boreal spring 2003 operational system, 15% of the global influence is due to the assimilated observations in any one analysis, and the complementary 85% is the influence of the prior (background) information, a short-range forecast containing information from earlier assimilated observations. About 25% of the observational information is currently provided by surface-based observing systems, and 75% by satellite systems. Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-sparse areas or in dynamically active regions. Background-error correlations also play an important role: high correlation diminishes the observation influence and amplifies the importance of the surrounding real and pseudo observations (prior information in observation space). Incorrect specifications of background and observation-error covariance matrices can be identified, interpreted and better understood by the use of influence-matrix diagnostics for the variety of observation types and observed variables used in the data assimilation system. Copyright © 2004 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data, and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established state-of-the-art methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of developing efficient sampling schemes for multiband sparse signals. Previous results on multicoset sampling implementations that lead to universal sampling patterns (which guarantee perfect reconstruction), are based on a set of appropriate interleaved analog to digital converters, all of them operating at the same sampling frequency. In this paper we propose an alternative multirate synchronous implementation of multicoset codes, that is, all the analog to digital converters in the sampling scheme operate at different sampling frequencies, without need of introducing any delay. The interleaving is achieved through the usage of different rates, whose sum is significantly lower than the Nyquist rate of the multiband signal. To obtain universal patterns the sampling matrix is formulated and analyzed. Appropriate choices of the parameters, that is the block length and the sampling rates, are also proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many problems in digital communications involve wideband radio signals. As the most recent example, the impressive advances in Cognitive Radio systems make even more necessary the development of sampling schemes for wideband radio signals with spectral holes. This is equivalent to considering a sparse multiband signal in the framework of Compressive Sampling theory. Starting from previous results on multicoset sampling and recent advances in compressive sampling, we analyze the matrix involved in the corresponding reconstruction equation and define a new method for the design of universal multicoset codes, that is, codes guaranteeing perfect reconstruction of the sparse multiband signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let P be a system of n linear nonhomogeneous ordinary differential polynomials in a set U of n-1 differential indeterminates. Differential resultant formulas are presented to eliminate the differential indeterminates in U from P. These formulas are determinants of coefficient matrices of appropriate sets of derivatives of the differential polynomials in P, or in a linear perturbation Pe of P. In particular, the formula dfres(P) is the determinant of a matrix M(P) having no zero columns if the system P is ``super essential". As an application, if the system PP is sparse generic, such formulas can be used to compute the differential resultant dres(PP) introduced by Li, Gao and Yuan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A matrix representation of the sparse differential resultant is the basis for efficient computation algorithms, whose study promises a great contribution to the development and applicability of differential elimination techniques. It is shown how sparse linear differential resultant formulas provide bounds for the order of derivation, even in the nonlinear case, and they also provide (in many cases) the bridge with results in the nonlinear algebraic case.