Linear Sparse Differential Resultant Formulas
Data(s) |
2013
|
---|---|
Resumo |
Let P be a system of n linear nonhomogeneous ordinary differential polynomials in a set U of n-1 differential indeterminates. Differential resultant formulas are presented to eliminate the differential indeterminates in U from P. These formulas are determinants of coefficient matrices of appropriate sets of derivatives of the differential polynomials in P, or in a linear perturbation Pe of P. In particular, the formula dfres(P) is the determinant of a matrix M(P) having no zero columns if the system P is ``super essential". As an application, if the system PP is sparse generic, such formulas can be used to compute the differential resultant dres(PP) introduced by Li, Gao and Yuan. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
spa |
Publicador |
E.T.S. Arquitectura (UPM) |
Relação |
http://oa.upm.es/30918/1/LAARueda_ldresfor_VersionRepositorio.pdf http://dx.doi.org/10.1016/j.laa2013.01.016 info:eu-repo/semantics/altIdentifier/doi/1016/j.laa.2013.01.016 |
Direitos |
(c) Editor/Autor info:eu-repo/semantics/openAccess |
Fonte |
Linear Algebra and its Applications, ISSN 0024-3795, 2013, Vol. 438 |
Palavras-Chave | #Matemáticas |
Tipo |
info:eu-repo/semantics/article Artículo NonPeerReviewed |