Linear Sparse Differential Resultant Formulas


Autoria(s): Rueda Pérez, Sonia Luisa
Data(s)

2013

Resumo

Let P be a system of n linear nonhomogeneous ordinary differential polynomials in a set U of n-1 differential indeterminates. Differential resultant formulas are presented to eliminate the differential indeterminates in U from P. These formulas are determinants of coefficient matrices of appropriate sets of derivatives of the differential polynomials in P, or in a linear perturbation Pe of P. In particular, the formula dfres(P) is the determinant of a matrix M(P) having no zero columns if the system P is ``super essential". As an application, if the system PP is sparse generic, such formulas can be used to compute the differential resultant dres(PP) introduced by Li, Gao and Yuan.

Formato

application/pdf

Identificador

http://oa.upm.es/30918/

Idioma(s)

spa

Publicador

E.T.S. Arquitectura (UPM)

Relação

http://oa.upm.es/30918/1/LAARueda_ldresfor_VersionRepositorio.pdf

http://dx.doi.org/10.1016/j.laa2013.01.016

info:eu-repo/semantics/altIdentifier/doi/1016/j.laa.2013.01.016

Direitos

(c) Editor/Autor

info:eu-repo/semantics/openAccess

Fonte

Linear Algebra and its Applications, ISSN 0024-3795, 2013, Vol. 438

Palavras-Chave #Matemáticas
Tipo

info:eu-repo/semantics/article

Artículo

NonPeerReviewed