999 resultados para Solar concentration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcrystalline silicon is a two-phase material. Its composition can be interpreted as a series of grains of crystalline silicon imbedded in an amorphous silicon tissue, with a high concentration of dangling bonds in the transition regions. In this paper, results for the transport properties of a mu c-Si:H p-i-n junction obtained by means of two-dimensional numerical simulation are reported. The role played by the boundary regions between the crystalline grains and the amorphous matrix is taken into account and these regions are treated similar to a heterojunction interface. The device is analysed under AM1.5 illumination and the paper outlines the influence of the local electric field at the grain boundary transition regions on the internal electric configuration of the device and on the transport mechanism within the mu c-Si:H intrinsic layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada a la Plataforma Solar de Almería entre desembre del 2006 i gener del 2007. S’ha dut a terme la degradació en planta pilot dels colorants reactius Procion Red H-E7B i Cibacron Red FN-R mitjançant el procés de foto-Fenton aplicat com a tractament únic i com a pretractament d’un procés biològic. El procés de foto-Fenton, assistit amb llum solar, es va realitzar en un fotoreactor solar tipus Col•lector Parabòlic Compost (CPC) i el tractament biològic en un Reactor de Biomassa Immobilitzada (RBI). Com a punt de partida, i amb l’objectiu d’estudiar la reproductibilitat del sistema, es van prendre resultats obtinguts d’experiments realitzats prèviament a escala de laboratori i amb llum artificial. El paràmetre Carboni Orgànic Total (COT) es va emprar com a indicador de l’eliminació dels colorants i dels seus intermedis. En aplicar únicament el procés de foto-Fenton com a tractament, concentracions de 10 mg•l-1 de Fe (II) i 250 mg•l-1 de H2O2 per degradar 250 mg•l-1 Procion Red H-E7B, i de 20 mg•l-1 de Fe (II) i 500 mg•l-1 de H2O2 per degradar 250 mg•l-1 Cibacron Red FN-R, van reproduir els resultants obtinguts al laboratori, amb uns nivells d’eliminació de COT del 82 i 86%, respectivament. A més, l’ús beneficiós de la llum solar en el procés de foto-Fenton, juntament amb la configuració del CPC, van incrementar la velocitat de degradació respecte als resultats previs, permetent la reducció de la concentració de Fe (II) de 10 a 2 mg•l-1 (Procion Red H-E7B) i de 20 a 5 mg•l-1 (Cibacron Red FN-R) sense pèrdues d’efectivitat. D’altre banda, el sistema combinat foto-Fenton/tractament biològic en planta pilot, unes concentracions d’oxidant de 225 mg•l-1 H2O2 per Cibacron Red FN-R i 65 mg•l-1 H2O2 per Procion Red H-E7B van ser suficients per generar solucions intermèdies biodegradables i alimentar així el RBI, millorant inclús els resultats obtinguts prèviament al laboratori.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we have studied the texturization process of (100) c-Si wafers using a low concentration potassium hydroxide solution in order to obtain good quality textured wafers. The optimization of the etching conditions have led to random but uniform pyramidal structures with good optical properties. Then, symmetric heterojunctions were deposited by Hot-Wire CVD onto these substrates and the Quasi-Steady-State PhotoConductance technique was used to measure passivation quality. Little degradation in the effective lifetime and implicit open circuit voltage of these devices (< 20 mV) was observed in all cases. It is especially remarkable that for big uniform pyramids, the open-circuit voltage is comparable to the values obtained on flat substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the influence of the deposition conditions on the performance of p-i-n microcrystalline silicon solar cells completely deposited by hot-wire chemical vapor deposition is studied. With this aim, the role of the doping concentration, the substrate temperature of the p-type layer and of amorphous silicon buffer layers between the p/i and i/n microcrystalline layers is investigated. Best results are found when the p-type layer is deposited at a substrate temperature of 125 °C. The dependence seen of the cell performance on the thickness of the i layer evidenced that the efficiency of our devices is still limited by the recombination within this layer, which is probably due to the charge of donor centers most likely related to oxygen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, TiO2 photocatalysis was used to disinfect domestic wastewaters previously treated by different biological treatment systems: Upward-flow Anaerobic Sludge Blanket (UASB), facultative pond, and duckweed pond. The microorganisms monitored were E. coli, total coliforms, Shigella species, and Salmonella species. Photocatalytic experiments were carried out using two light sources: a solar simulator (UV intensity: 68-70 W m-2) and black-light lamps (BLL UV intensity: 17-20 W m-2). Samples were taken after each treatment stage. Results indicate that bacterial photocatalytic inactivation is affected by characteristics of the effluent, including turbidity, concentration of organic matter, and bacterial concentration, which depend of the type of biological pretreatment previously used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SiO2/TiO2 nanostructured composites with three different ratios of Si:Ti were prepared using the sol-gel method. These materials were characterized using energy dispersive X-ray fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, Raman with Fourier transform infrared spectroscopy, and the specific surface area. The band gaps of materials were determined by diffuse reflectance spectra, and the values of 3.20 ± 0.01, 2.92 ± 0.02, and 2.85 ± 0.01 eV were obtained as a result of the proportional increases in the amount of Ti within the composite. The materials exhibit only the anatase (TiO2) crystalline phase and have crystalline domains ranging from 4 to 5 nm. The photodegradation process of methylene blue, royal blue GRL, and golden yellow GL dyes were studied with respect to their contact times, pH variations within the solution, and the variations in the dye concentration of the solution in response to only sunlight. The maximum amount of time for the mineralization of dyes was 90 min. The kinetics of the process follows an apparently first order model, in which the obtained rate constant values were 5.72 × 10-2 min-1 for methylene blue, 6.44 × 10-2min-1 for royal blue GRL, and 1.07 × 10-1min-1 for golden yellow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study on the fabrication and characterization of spray pyrolysed cadmium sulphide homojunction solar cells. As an alternative to the conventional energy source, the PV technology has to be improved. Study about the factors affecting the performance of the existing solar cells and this will result in the enhancement of efficiency of the cells. At the same time it is equally important to have R&D works on developing new photovoltaic devices and processes which are less expensive for large scale production. CdS is an important binary compound semiconductor, which is very useful in the field of photovoltaics. It is very easy to prepare large area CdS thin films. In order to fabricate thin film homojunction cadmium sulphide cells, prepared and characterized SnO2 thin film as the lower electrode, p-CdS as the active layer and n-CdS as window layer. Cadmium material used for the fabrication of homojunction solar cells is highly toxic. The major damage due to continued exposure to low levels of cadmium are on the kidneys, lungs and bones. The real advantage of spray pyrolysis process is that there is no emission of any toxic gases during the deposition. Very low concentration of the chemicals is needed in this process. The risk involved from this material is very low, though they are toxic. On large scale usage it may become necessary that the cells after their life, should be bought back by the companies to retrieve chemicals like cadmium. This will reduce environmental problem and also the material wastage

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim of the present work was to automate CSP process, to deposit and characterize CuInS2/In2S3 layers using this system and to fabricate devices using these films.An automated spray system for the deposition of compound semiconductor thin films was designed and developed so as to eliminate the manual labour involved in spraying and facilitate standardization of the method. The system was designed such that parameters like spray rate, movement of spray head, duration of spray, temperature of substrate, pressure of carrier gas and height of the spray head from the substrate could be varied. Using this system, binary, ternary as well as quaternary films could be successfully deposited.The second part of the work deal with deposition and characterization of CuInS2 and In2S3 layers respectively.In the case of CuInS2 absorbers, the effects of different preparation conditions and post deposition treatments on the optoelectronic, morphological and structural properties were investigated. It was observed that preparation conditions and post deposition treatments played crucial role in controlling the properties of the films. The studies in this direction were useful in understanding how the variation in spray parameters tailored the properties of the absorber layer. These results were subsequently made use of in device fabrication process.Effects of copper incorporation in In2S3 films were investigated to find how the diffusion of Cu from CuInS2 to In2S3 will affect the properties at the junction. It was noticed that there was a regular variation in the opto-electronic properties with increase in copper concentration.Devices were fabricated on ITO coated glass using CuInS2 as absorber and In2S3 as buffer layer with silver as the top electrode. Stable devices could be deposited over an area of 0.25 cm2, even though the efficiency obtained was not high. Using manual spray system, we could achieve devices of area 0.01 cm2 only. Thus automation helped in obtaining repeatable results over larger areas than those obtained while using the manual unit. Silver diffusion on the cells before coating the electrodes resulted in better collection of carriers.From this work it was seen CuInS2/In2S3 junction deposited through automated spray process has potential to achieve high efficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galactic cosmic ray flux at Earth is modulated by the heliospheric magnetic field. Heliospheric modulation potential, Φ, during grand solar minima is investigated using an open solar flux (OSF) model with OSF source based on sunspot number, R, and OSF loss on heliospheric current sheet inclination. Changing dominance between source and loss means Φ varies in- (anti-) phase with R during strong (weak) cycles, in agreement with Φ estimates from ice core records of 10Be concentration, which are in-phase during most of the last 300 years, but anti-phase during the Maunder Minimum. Model results suggest “flat” OSF cycles, such as solar cycle 20 result from OSF source and loss terms temporarily balancing throughout the cycle. Thus even if solar activity continues to decline steadily, the long-term drop in OSF through SC21 to SC23 may plateau during SC24, though reemerge in SC25 with the inverted phase relation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the causes of the century-long increase in geomagnetic activity, quantified by annual means of the aa index, using observations of interplanetary space, galactic cosmic rays, the ionosphere, and the auroral electrojet, made during the last three solar cycles. The effects of changes in ionospheric conductivity, the Earth's dipole tilt, and magnetic moment are shown to be small; only changes in near-Earth interplanetary space make a significant contribution to the long-term increase in activity. We study the effects of the interplanetary medium by applying dimensional analysis to generate the optimum solar wind-magnetosphere energy coupling function, having an unprecedentedly high correlation coefficient of 0.97. Analysis of the terms of the coupling function shows that the largest contributions to the drift in activity over solar cycles 20-22 originate from rises in the average interplanetary magnetic field (IMF) strength, solar wind concentration, and speed; average IMF orientation has grown somewhat less propitious for causing geomagnetic activity. The combination of these factors explains almost all of the 39% rise in aa observed over the last three solar cycles. Whereas the IMF strength varies approximately in phase with sunspot numbers, neither its orientation nor the solar wind density shows any coherent solar cycle variation. The solar wind speed peaks strongly in the declining phase of even-numbered cycles and can be identified as the chief cause of the phase shift between the sunspot numbers and the aa index. The rise in the IMF magnitude, the largest single contributor to the drift in geomagnetic activity, is shown to be caused by a rise in the solar coronal magnetic field, consistent with a rise in the coronal source field, modeled from photospheric observations, and an observed decay in cosmic ray fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photocatalytic performance of TiO(2)-SiMgO(x) ceramic plates for trichloroethylene abatement in gas phase has been evaluated under sun irradiance conditions. A continuous flow Pyrex glass reactor fixed on the focus of a compound parabolic collector has been used. The performance of the hybrid photocatalyst has been evaluated as the variation of TCE conversion and reaction products formation with the solar irradiance at different total gas flow, TCE concentration, and water vapour content. SiMgO(x) not only provides adsorbent properties to the photocatalyst, but it also allows the effective use of the material during low solar irradiance conditions. The adsorption-desorption phenomena play a pivotal role in the behaviour of the system. Thus, TCE conversion curves present two different branches when the sun irradiance increases (sunrise) or decreases (sunset). CO(2), COCl(2) and DCAC were the most relevant products detected. Meanwhile CO(2) concentration was insensitive to the branch analysed, COCl(2) or DCAC were not indicating the ability of these compounds to be adsorbed on the composite. An increase of the UV irradiation at total TCE conversion promotes the CO(2) selectivity. The excess of energy arriving to the reactor favours the direct reaction pathway to produce CO(2). The photonic efficiency, calculated as a function of the rate of CO(2) formation, decreases linearly with the solar irradiance up to around 2 mW cm(-2), where it becomes constant. For decontamination systems high TCE conversion is pursuit and then high solar irradiance values are required, in spite of lower photonic efficiency values. The present photocatalyst configuration, with only 17% of the reactor volume filled with the photoactive material, allows total TCE conversion for 150 ppm and 1 L min(-1) in a wide sun irradiance window from 2 to 4 mW cm(-2). The incorporation of water vapour leads to an increase of the CO(2) selectivity keeping the TCE conversion around 90%, although significant amounts of COCl(2) were observed. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)