1000 resultados para Sistemas especialistas : Redes neurais : Sistema de apoio a decisao : Tomada de decisao
Resumo:
A competitividade está cada vez mais acirrada, em nível mundial, obrigando as empresas a fazerem verdadeiros malabarismos para definir suas políticas de precificação. Para atingir esse objetivo de forma eficaz, as empresas precisam ser ágeis e inovadoras, pois a concorrência está cada vez mais agressiva. Visando à redução da dificuldade do decisor na elaboração e na escolha de políticas comerciais, este estudo apresenta a concepção, o desenvolvimento e a validação de um Sistema de Apoio à Decisão Comercial, denominado de SADEC. A concepção foi antecedida pela avaliação das variáveis que influenciam a formação do preço e pela elaboração dos modelos matemáticos que dão sustentação ao SADEC. Durante essa fase de estudo, foram apresentadas algumas inter-relações entre as variáveis do preço que contribuem na avaliação da relação custo-volumelucro. Para a concepção, o desenvolvimento e a validação do SADEC foi utilizada a metodologia de análise consolidada pela pesquisa operacional. Com a concepção e o desenvolvimento do SADEC foi criado um sistema que auxilia o decisor a estabelecer e avaliar vários cenários, visando à criação de uma melhor política de preficicação. A validação do SADEC, foi realizada junto a três redes comerciais, com sede em Caxias do Sul, onde foi possível verificar a sua validade, e apresentou evidências concretas de que tal sistema é de grande utilidade para a definição de políticas comerciais. Acredita-se que este estudo contribua para a análise da relação custo-volume-lucro e, principalmente, para o estudo do processo decisório no impacto do uso de sistemas de apoio à decisão para a redução das dificuldades na definição de políticas comerciais.
Resumo:
A capacidade de encontrar e aprender as melhores trajetórias que levam a um determinado objetivo proposto num ambiente e uma característica comum a maioria dos organismos que se movimentam. Dentre outras, essa e uma das capacidades que têm sido bastante estudadas nas ultimas décadas. Uma consequência direta deste estudo e a sua aplicação em sistemas artificiais capazes de se movimentar de maneira inteligente nos mais variados tipos de ambientes. Neste trabalho, realizamos uma abordagem múltipla do problema, onde procuramos estabelecer nexos entre modelos fisiológicos, baseados no conhecimento biológico disponível, e modelos de âmbito mais prático, como aqueles existentes na área da ciência da computação, mais especificamente da robótica. Os modelos estudados foram o aprendizado biológico baseado em células de posição e o método das funções potencias para planejamento de trajetórias. O objetivo nosso era unificar as duas idéias num formalismo de redes neurais. O processo de aprendizado de trajetórias pode ser simplificado e equacionado em um modelo matemático que pode ser utilizado no projeto de sistemas de navegação autônomos. Analisando o modelo de Blum e Abbott para navegação com células de posição, mostramos que o problema pode ser formulado como uma problema de aprendizado não-supervisionado onde a estatística de movimentação no meio passa ser o ingrediente principal. Demonstramos também que a probabilidade de ocupação de um determinado ponto no ambiente pode ser visto como um potencial que tem a propriedade de não apresentar mínimos locais, o que o torna equivalente ao potencial usado em técnicas de robótica como a das funções potencias. Formas de otimização do aprendizado no contexto deste modelo foram investigadas. No âmbito do armazenamento de múltiplos mapas de navegação, mostramos que e possível projetar uma rede neural capaz de armazenar e recuperar mapas navegacionais para diferentes ambientes usando o fato que um mapa de navegação pode ser descrito como o gradiente de uma função harmônica. A grande vantagem desta abordagem e que, apesar do baixo número de sinapses, o desempenho da rede e muito bom. Finalmente, estudamos a forma de um potencial que minimiza o tempo necessário para alcançar um objetivo proposto no ambiente. Para isso propomos o problema de navegação de um robô como sendo uma partícula difundindo em uma superfície potencial com um único ponto de mínimo. O nível de erro deste sistema pode ser modelado como uma temperatura. Os resultados mostram que superfície potencial tem uma estrutura ramificada.
Resumo:
Este estudo propõe um método alternativo para a previsão de demanda de energia elétrica, através do desenvolvimento de um modelo de estimação baseado em redes neurais artificiais. Tal método ainda é pouco usado na estimativa de demanda de energia elétrica, mas tem se mostrado promissor na resolução de problemas que envolvem sistemas de potência. Aqui são destacados os principais fatores que devem pautar a modelagem de um sistema baseada em redes neurais artificiais, que são: seleção das variáveis de entrada; quantidade de variáveis; arquitetura da rede; treinamento; previsão da saída. O modelo ora apresentado foi desenvolvido a partir de uma amostra de 125 municípios do Estado do Rio Grande do Sul (Brasil), nos anos de 1999 a 2002. Como variáveis de entrada, foram selecionados a temperatura ambiente (média e desvio-padrão anual), a umidade relativa do ar (média e desvio-padrão anual), o PIB anual e a população anual de cada município incluído na amostra. Para validar a proposta apresentada, são mostrados resultados baseados nas simulações com o modelo proposto.
Resumo:
Este trabalho tem por motivação evidenciar a eficiência de redes neurais na classificação de rentabilidade futura de empresas, e desta forma, prover suporte para o desenvolvimento de sistemas de apoio a tomada de decisão de investimentos. Para serem comparados com o modelo de redes neurais, foram escolhidos o modelo clássico de regressão linear múltipla, como referência mínima, e o de regressão logística ordenada, como marca comparativa de desempenho (benchmark). Neste texto, extraímos dados financeiros e contábeis das 1000 melhores empresas listadas, anualmente, entre 1996 e 2006, na publicação Melhores e Maiores – Exame (Editora Abril). Os três modelos foram construídos tendo como base as informações das empresas entre 1996 e 2005. Dadas as informações de 2005 para estimar a classificação das empresas em 2006, os resultados dos três modelos foram comparados com as classificações observadas em 2006, e o modelo de redes neurais gerou o melhor resultado.
Resumo:
This work aims to obtain a low-cost virtual sensor to estimate the quality of LPG. For the acquisition of data from a distillation tower, software HYSYS ® was used to simulate chemical processes. These data will be used for training and validation of an Artificial Neural Network (ANN). This network will aim to estimate from available simulated variables such as temperature, pressure and discharge flow of a distillation tower, the mole fraction of pentane present in LPG. Thus, allowing a better control of product quality
Resumo:
This work develops a robustness analysis with respect to the modeling errors, being applied to the strategies of indirect control using Artificial Neural Networks - ANN s, belong to the multilayer feedforward perceptron class with on-line training based on gradient method (backpropagation). The presented schemes are called Indirect Hybrid Control and Indirect Neural Control. They are presented two Robustness Theorems, being one for each proposed indirect control scheme, which allow the computation of the maximum steady-state control error that will occur due to the modeling error what is caused by the neural identifier, either for the closed loop configuration having a conventional controller - Indirect Hybrid Control, or for the closed loop configuration having a neural controller - Indirect Neural Control. Considering that the robustness analysis is restrict only to the steady-state plant behavior, this work also includes a stability analysis transcription that is suitable for multilayer perceptron class of ANN s trained with backpropagation algorithm, to assure the convergence and stability of the used neural systems. By other side, the boundness of the initial transient behavior is assured by the assumption that the plant is BIBO (Bounded Input, Bounded Output) stable. The Robustness Theorems were tested on the proposed indirect control strategies, while applied to regulation control of simulated examples using nonlinear plants, and its results are presented
Resumo:
A new method to perform TCP/IP fingerprinting is proposed. TCP/IP fingerprinting is the process of identify a remote machine through a TCP/IP based computer network. This method has many applications related to network security. Both intrusion and defence procedures may use this process to achieve their objectives. There are many known methods that perform this process in favorable conditions. However, nowadays there are many adversities that reduce the identification performance. This work aims the creation of a new OS fingerprinting tool that bypass these actual problems. The proposed method is based on the use of attractors reconstruction and neural networks to characterize and classify pseudo-random numbers generators
Resumo:
This work presents a diagnosis faults system (rotor, stator, and contamination) of three-phase induction motor through equivalent circuit parameters and using techniques patterns recognition. The technology fault diagnostics in engines are evolving and becoming increasingly important in the field of electrical machinery. The neural networks have the ability to classify non-linear relationships between signals through the patterns identification of signals related. It is carried out induction motor´s simulations through the program Matlab R & Simulink R , and produced some faults from modifications in the equivalent circuit parameters. A system is implemented with multiples classifying neural network two neural networks to receive these results and, after well-trained, to accomplish the identification of fault´s pattern
Resumo:
In a real process, all used resources, whether physical or developed in software, are subject to interruptions or operational commitments. However, in situations in which operate critical systems, any kind of problem may bring big consequences. Knowing this, this paper aims to develop a system capable to detect the presence and indicate the types of failures that may occur in a process. For implementing and testing the proposed methodology, a coupled tank system was used as a study model case. The system should be developed to generate a set of signals that notify the process operator and that may be post-processed, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors, actuators and amplifiers of the real plant, the data set of the faults will be computationally generated and the results collected from numerical simulations of the process model. The system will be composed by structures with Artificial Neural Networks, trained in offline mode using Matlab®
Resumo:
A serious problem that affects an oil refinery s processing units is the deposition of solid particles or the fouling on the equipments. These residues are naturally present on the oil or are by-products of chemical reactions during its transport. A fouled heat exchanger loses its capacity to adequately heat the oil, needing to be shut down periodically for cleaning. Previous knowledge of the best period to shut down the exchanger may improve the energetic and production efficiency of the plant. In this work we develop a system to predict the fouling on a heat exchanger from the Potiguar Clara Camarão Refinery, based on data collected in a partnership with Petrobras. Recurrent Neural Networks are used to predict the heat exchanger s flow in future time. This variable is the main indicator of fouling, because its value decreases gradually as the deposits on the tubes reduce their diameter. The prediction could be used to tell when the flow will have decreased under an acceptable value, indicating when the exchanger shutdown for cleaning will be needed
Resumo:
Investigaremos, a partir da perspectiva da Ciência Cognitiva, a noção de representação mental, no domínio da percepção visual humana. Ênfase é dada ao paradigma Conexionista, ou de Redes Neurais, de acordo com o qual tais representações mentais são descritas como estruturas emergentes da interação entre sistemas de processamento de informação que se auto-organizam - tais como o cérebro - e a luz estruturada no meio ambiente. Sugerimos que essa noção de representação mental indica uma solução para uma antiga polêmica, entre Representacionalistas e Eliminativistas, acerca da existência de representações mentais no sistema perceptual humano.
Resumo:
The field of Wireless Sensor and Actuator Networks (WSAN) is fast increasing and has attracted the interest of both the research community and the industry because of several factors, such as the applicability of such networks in different application domains (aviation, civil engineering, medicine, and others). Moreover, advances in wireless communication and the reduction of hardware components size also contributed for a fast spread of these networks. However, there are still several challenges and open issues that need to be tackled in order to achieve the full potential of WSAN usage. The development of WSAN systems is one of the most relevant of these challenges considering the number of variables involved in this process. Currently, a broad range of WSAN platforms and low level programming languages are available to build WSAN systems. Thus, developers need to deal with details of different sensor platforms and low-level programming abstractions of sensor operational systems on one hand, and they also need to have specific (high level) knowledge about the distinct application domains, on the other hand. Therefore, in order to decouple the handling of these two different levels of knowledge, making easier the development process of WSAN systems, we propose LWiSSy (Domain Language for Wireless Sensor and Actuator Networks Systems), a domain specific language (DSL) for WSAN. The use of DSLs raises the abstraction level during the programming of systems and modularizes the system building in several steps. Thus, LWiSSy allows the domain experts to directly contribute in the development of WSANs without having knowledge on low level sensor platforms, and network experts to program sensor nodes to meet application requirements without having specific knowledge on the application domain. Additionally, LWiSSy enables the system decomposition in different levels of abstraction according to structural and behavioral features and granularities (network, node group and single node level programming)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)