995 resultados para Single layers
Resumo:
The photonic modes of Thue-Morse and Fibonacci lattices with generating layers A and B, of positive and negative indices of refraction, are calculated by the transfer-matrix technique. For Thue-Morse lattices, as well for periodic lattices with AB unit cell, the constructive interference of reflected waves, corresponding to the zero(th)-order gap, takes place when the optical paths in single layers A and B are commensurate. In contrast, for Fibonacci lattices of high order, the same phenomenon occurs when the ratio of those optical paths is close to the golden ratio. In the long wavelength limit, analytical expressions defining the edge frequencies of the zero(th) order gap are obtained for both quasi-periodic lattices. Furthermore, analytical expressions that define the gap edges around the zero(th) order gap are shown to correspond to the
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recently, classical elasticity theory for thin sheets was used to demonstrate the existence of a universal structural behavior describing the confinement of sheets inside cylindrical tubes. However, this kind of formalism was derived to describe macroscopic systems. A natural question is whether this behavior still holds at nanoscale. In this work, we have investigated through molecular dynamics simulations the structural behavior of graphene and boron nitride single layers confined into nanotubes. Our results show that the class of universality observed at macroscale is no longer observed at nanoscale. The origin of this discrepancy is addressed in terms of the relative importance of forces and energies at macro and nano scales. © 2012 Materials Research Society.
Resumo:
In this thesis foliation boudinage and related structures have been studied based on field observations and numerical modeling. Foliation boudinage occurs in foliated rocks independent of lithology contrast. The developing structures are called ‘Foliation boudinage structures (FBSs)’ and show evidence for both ductile and brittle deformation. They are recognized in rocks by perturbations in monotonous foliation adjacent to a central discontinuity, mostly filled with vein material. Foliation boudinage structures have been studied in the Çine Massif in SW-Turkey and the Furka Pass-Urseren Zone in central Switzerland. Four common types have been distinguished in the field, named after vein geometries in their boudin necks in sections normal to the boudin axis: lozenge-, crescent-, X- and double crescent- type FBSs. Lozengetype FBSs are symmetric and characterized by lozenge-shaped veins in their boudin neck with two cusps facing opposite sides. A symmetrical pair of flanking folds occurs on the two sides of the vein. Crescent-type FBSs are asymmetric with a single smoothly curved vein in the boudin neck, with vein contacts facing to one side. X- and double crescent- type FBSs are asymmetric. The geometry of the neck veins resembles that of cuspate-lobate structures. The geometry of flanking structures is related to the shape of the veins. The veins are mostly filled with massive quartz in large single crystals, commonly associated with tourmaline, feldspar and biotite and in some cases with chlorite. The dominance of large facetted single quartz crystals and spherulitic chlorite in the veins suggest that the minerals grew into open fluidfilled space. FLAC experiments show that fracture propagation during ductile deformation strongly influences the geometry of developing veins. The cusps of the veins are better developed in the case of propagating fractures. The shape of the boudin neck veins in foliation boudinage depends on the initial orientation and shape of the fracture, the propagation behaviour of the fracture, the geometry of bulk flow, and the stage at which mineral filling takes place. A two dimensional discrete element model was used to study the progressive development of foliation boudinage structures and the behavior of visco-elastic material deformed under pure shear conditions. Discrete elements are defined by particles that are connected by visco-elastic springs. Springs can break. A number of simulations was Abstract vii performed to investigate the effect of material properties (Young’s modulus, viscosity and breaking strength) and anisotropy on the developing structures. The models show the development of boudinage in single layers, multilayers and in anisotropic materials with random mica distribution. During progressive deformation different types of fractures develop from mode I, mode II to the combination of both. Voids develop along extension fractures, at intersections of conjugate shear fractures and in small pull-apart structures along shear fractures. These patterns look similar to the natural examples. Fractures are more localized in the models where the elastic constants are low and the competence contrast is high between the layers. They propagate through layers where the constants are high and the competence contrast is relatively low. Flow localize around these fractures and voids. The patterns similar to symmetric boudinage structures and extensional neck veins (e.g. lozenge type) more commonly develop in the models with lower elastic constants and anisotropy. The patterns similar to asymmetric foliation boudinage structures (e.g. X-type) develop associated with shear fractures in the models where elastic constants and anisotropy of the materials are relatively high. In these models boudin neck veins form commonly at pull-aparts along the shear fractures and at the intersection of fractures.
Resumo:
Key technology applications like magnetoresistive sensors or the Magnetic Random Access Memory (MRAM) require reproducible magnetic switching mechanisms. i.e. predefined remanent states. At the same time advanced magnetic recording schemes push the magnetic switching time into the gyromagnetic regime. According to the Landau-Lifschitz-Gilbert formalism, relevant questions herein are associated with magnetic excitations (eigenmodes) and damping processes in confined magnetic thin film structures.rnObjects of study in this thesis are antiparallel pinned synthetic spin valves as they are extensively used as read heads in today’s magnetic storage devices. In such devices a ferromagnetic layer of high coercivity is stabilized via an exchange bias field by an antiferromagnet. A second hard magnetic layer, separated by a non-magnetic spacer of defined thickness, aligns antiparallel to the first. The orientation of the magnetization vector in the third ferromagnetic NiFe layer of low coercivity - the freelayer - is then sensed by the Giant MagnetoResistance (GMR) effect. This thesis reports results of element specific Time Resolved Photo-Emission Electron Microscopy (TR-PEEM) to image the magnetization dynamics of the free layer alone via X-ray Circular Dichroism (XMCD) at the Ni-L3 X-ray absorption edge.rnThe ferromagnetic systems, i.e. micron-sized spin valve stacks of typically deltaR/R = 15% and Permalloy single layers, were deposited onto the pulse leading centre stripe of coplanar wave guides, built in thin film wafer technology. The ferromagnetic platelets have been applied with varying geometry (rectangles, ellipses and squares), lateral dimension (in the range of several micrometers) and orientation to the magnetic field pulse to study the magnetization behaviour in dependence of these magnitudes. The observation of magnetic switching processes in the gigahertz range became only possible due to the joined effort of producing ultra-short X-ray pulses at the synchrotron source BESSY II (operated in the so-called low-alpha mode) and optimizing the wave guide design of the samples for high frequency electromagnetic excitation (FWHM typically several 100 ps). Space and time resolution of the experiment could be reduced to d = 100 nm and deltat = 15 ps, respectively.rnIn conclusion, it could be shown that the magnetization dynamics of the free layer of a synthetic GMR spin valve stack deviates significantly from a simple phase coherent rotation. In fact, the dynamic response of the free layer is a superposition of an averaged critically damped precessional motion and localized higher order spin wave modes. In a square platelet a standing spin wave with a period of 600 ps (1.7 GHz) was observed. At a first glance, the damping coefficient was found to be independent of the shape of the spin-valve element, thus favouring the model of homogeneous rotation and damping. Only by building the difference in the magnetic rotation between the central region and the outer rim of the platelet, the spin wave becomes visible. As they provide an additional efficient channel for energy dissipation, spin waves contribute to a higher effective damping coefficient (alpha = 0.01). Damping and magnetic switching behaviour in spin valves thus depend on the geometry of the element. Micromagnetic simulations reproduce the observed higher-order spin wave mode.rnBesides the short-run behaviour of the magnetization of spin valves Permalloy single layers with thicknesses ranging from 3 to 40 nm have been studied. The phase velocity of a spin wave in a 3 nm thick ellipse could be determined to 8.100 m/s. In a rectangular structure exhibiting a Landau-Lifschitz like domain pattern, the speed of the field pulse induced displacement of a 90°-Néel wall has been determined to 15.000 m/s.rn
Resumo:
O presente trabalho está fundamentado no desenvolvimento de uma metodologia e/ou uma tecnologia de obtenção e caracterização de filtros ópticos de interferência de banda passante variável [C.M. da Silva, 2010] e de banda de corte variáveis, constituídos por refletores dielétricos multicamadas de filmes finos intercalados por cavidades de Fabry-Perot não planares com espessuras linearmente variáveis, que apresentam a propriedade do deslocamento linear da transmitância máxima espectral em função da posição, isto é, um Filtro de Interferência Variável (FIV). Este método apresenta novas e abrangentes possibilidades de confecção de filtros ópticos de interferência variável: lineares ou em outras formas desejadas, de comprimento de onda de corte variável (passa baixa ou alta) e filtros de densidade neutra variável, através da deposição de metais, além de aplicações em uma promissora e nova área de pesquisa na deposição de filmes finos não uniformes. A etapa inicial deste desenvolvimento foi o estudo da teoria dos filtros ópticos dielétricos de interferência para projetar e construir um filtro óptico banda passante convencional de um comprimento de onda central com camadas homogêneas. A etapa seguinte, com base na teoria óptica dos filmes finos já estabelecida, foi desenvolver a extensão destes conhecimentos para determinar que a variação da espessura em um perfil inclinado e linear da cavidade entre os refletores de Bragg é o principal parâmetro para produzir o deslocamento espacial da transmitância espectral, possibilitando o uso de técnicas especiais para se obter uma variação em faixas de bandas de grande amplitude, em um único filtro. Um trabalho de modelagem analítica e análise de tolerância de espessuras dos filmes depositados foram necessários para a seleção da estratégia do \"mascaramento\" seletivo do material evaporado formado na câmara e-Beam (elétron-Beam) com o objetivo da obtenção do filtro espectral linear variável de características desejadas. Para tanto, de acordo com os requisitos de projeto, foram necessárias adaptações em uma evaporadora por e-Beam para receber um obliterador mecânico especialmente projetado para compatibilizar os parâmetros das técnicas convencionais de deposição com o objetivo de se obter um perfil inclinado, perfil este previsto em processos de simulação para ajustar e calibrar a geometria do obliterador e se obter um filme depositado na espessura, conformação e disposição pretendidos. Ao final destas etapas de modelagem analítica, simulação e refinamento recorrente, foram determinados os parâmetros de projeto para obtenção de um determinado FIV (Filtro de Interferência Variável) especificado. Baseadas nos FIVs muitas aplicações são emergentes: dispositivos multi, hiper e ultra espectral para sensoriamento remoto e análise ambiental, sistemas Lab-on-Chip, biossensores, detectores chip-sized, espectrofotometria de fluorescência on-chip, detectores de deslocamento de comprimento de onda, sistemas de interrogação, sistemas de imageamento espectral, microespectrofotômetros e etc. No escopo deste trabalho se pretende abranger um estudo de uma referência básica do emprego do (FIV) filtro de interferência variável como detector de varredura de comprimento de ondas em sensores biológicos e químicos compatível com pós processamento CMOS. Um sistema básico que é constituído por um FIV montado sobre uma matriz de sensores ópticos conectada a um módulo eletrônico dedicado a medir a intensidade da radiação incidente e as bandas de absorção das moléculas presentes em uma câmara de detecção de um sistema próprio de canais de microfluidos, configurando-se em um sistema de aquisição e armazenamento de dados (DAS), é proposto para demonstrar as possibilidades do FIV e para servir de base para estudos exploratórios das suas diversas potencialidades que, entre tantas, algumas são mencionadas ao longo deste trabalho. O protótipo obtido é capaz de analisar fluidos químicos ou biológicos e pode ser confrontado com os resultados obtidos por equipamentos homologados de uso corrente.
Resumo:
We study the electronic structure of a heterojunction made of two monolayers of MoS2 and WS2. Our first-principles density functional calculations show that, unlike in the homogeneous bilayers, the heterojunction has an optically active band gap, smaller than the ones of MoS2 and WS2 single layers. We find that the optically active states of the maximum valence and minimum conduction bands are localized on opposite monolayers, and thus the lowest energy electron-holes pairs are spatially separated. Our findings portray the MoS2-WS2 bilayer as a prototypical example for band-gap engineering of atomically thin two-dimensional semiconducting heterostructures.
Resumo:
This thesis reports the results of DEM (Discrete Element Method) simulations of rotating drums operated in a number of different flow regimes. DEM simulations of drum granulation have also been conducted. The aim was to demonstrate that a realistic simulation is possible, and further understanding of the particle motion and granulation processes in a rotating drum. The simulation model has shown good qualitative and quantitative agreement with other published experimental results. A two-dimensional bed of 5000 disc particles, with properties similar to glass has been simulated in the rolling mode (Froude number 0.0076) with a fractional drum fill of approximately 30%. Particle velocity fields in the cascading layer, bed cross-section, and at the drum wall have shown good agreement with experimental PEPT data. Particle avalanches in the cascading layer have been shown to be consistent with single layers of particles cascading down the free surface towards the drum wall. Particle slip at the drum wall has been shown to depend on angular position, and ranged from 20% at the toe and shoulder, to less than 1% at the mid-point. Three-dimensional DEM simulations of a moderately cascading bed of 50,000 spherical elastic particles (Froude number 0.83) with a fractional fill of approximately 30% have also been performed. The drum axis was inclined by 50 to the horizontal with periodic boundaries at the ends of the drum. The mean period of bed circulation was found to be 0.28s. A liquid binder was added to the system using a spray model based on the concept of a wet surface energy. Granule formation and breakage processes have been demonstrated in the system.
Resumo:
The electronic properties of bilayer graphene strongly depend on relative orientation of the two atomic lattices. Whereas Bernal-stacked graphene is most commonly studied, a rotational mismatch between layers opens up a whole new field of rich physics, especially at small interlayer twist. Here we report on magnetotransport measurements on twisted graphene bilayers, prepared by folding of single layers. These reveal a strong dependence on the twist angle, which can be estimated by means of sample geometry. At small rotation, superlattices with a wavelength in the order of 10 nm arise and are observed by friction atomic force microscopy. Magnetotransport measurements in this small-angle regime show the formation of satellite Landau fans. These are attributed to additional Dirac singularities in the band structure and discussed with respect to the wide range of interlayer coupling models.
Resumo:
Single-crystal-like organic heterojunction films of copper phthalocyanine (CuPc) and copper-hexadecafluoro-phthalocyanine (F16CuPc) were fabricated by weak-epitaxy-growth method. The intrinsic properties of organic heterojunction were revealed through threshold voltage shift of field-effect transistors and measurement of single-crystal-like diodes. At both sides of the heterojunction interface 40 nm thick charge accumulation layers formed, which showed that the long carriers' diffusion length is due to the high crystallinity and low density of deep bulk traps of single-crystal-like films.
Resumo:
The single crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2 respectively, and the non-aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise of alternating layers of [Sb(OH)6]-1 octahedra and mixed [M(H2O)6]+2 / [Sb(OH)6]-1 octahedra. Mopungite comprises hydrogen bonded layers of [Sb(OH)6]-1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb-O symmetric stretch of the [Sb(OH)6]-1 octahedron, which occurs at approximately 620 cm-1. The Raman spectrum of mopungite showed many similarities to spectra of the di-octahedral minerals informing the view that the Sb octahedra gave rise to most of the Raman bands observed, particularly below 1200 cm-1. Assignments have been proposed based on the spectral comparison between the minerals, prior literature and density field theory calculations of the vibrational spectra of the free [Sb(OH)6]-1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6-31G(d) and lanl2dz for the Sb atom. The single crystal data spectra showed good mode separation, allowing the majority of the bands to be assigned a symmetry species of A or E.
Resumo:
Vertically aligned ZnO nanorods have been grown on silicon substrates pre-coated with thin, less than 10 nm, textured ZnO seeding layers via a vapor-solid mechanism. The ZnO seeding layers, which were essential for vertical alignment of ZnO nanorods without using any metal catalyst, were prepared by decomposing zinc acetate. The structure and the luminescence properties of the ZnO nanorods synthesized onto ZnO seeding layers were investigated and their morphologies were compared with those of single-crystalline GaN substrates and silicon substrates covered with sputtered ZnO flms. Patterning of ZnO seed layers using photolithography allowed the fabrication of patterned ZnO-nanorod arrays.
Resumo:
Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.
Resumo:
Multiscale, multiphase numerical modeling is used to explain the mechanisms of effective control of chirality distributions of single-walled carbon nanotubes in direct plasma growth and suggest effective approaches to further improvement. The model includes an unprecedented combination of the plasma sheath, ion/radical transport, species creation/loss, plasma–surface interaction, heat transfer, surface/bulk diffusion, graphene layer nucleation, and bending/lift-off modules. It is shown that the constructive interplay between the plasma and the Gibbs–Thomson effect can lead to the effective nucleation and lift-off of small graphene layers on small metal catalyst nanoparticles. As a result, much thinner nanotubes with narrower chirality distributions can nucleate at much lower process temperatures and pressures compared to thermal CVD. This approach is validated by a host of experimental results, substantially reduces the amounts of energy and atomic matter required for the nanotube growth, and can be extended to other nanoscale structures and materials systems, thereby nearing the ultimate goal of energy- and matter-efficient nanotechnology.
Resumo:
A mechanism and model for the vertical growth of platelet-structured vertically aligned single-crystalline carbon nanostructures by the formation of graphene layers on a flat top surface are proposed and verified experimentally. It is demonstrated that plasma-related effects lead to self-sharpening of tapered nanocones to form needlelike nanostructures, in a good agreement with the predicted dependence of the radius of a nanocone's flat top on the incoming ion flux and surface temperature. The growth mechanism is relevant to a broad class of nanostructures including nanotips, nanoneedles, and nanowires and can be used to improve the predictability of nanofabrication processes. © 2007 American Institute of Physics.