998 resultados para Single Photons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reproducible terahertz (THz) photocurrent was observed at low temperatures in a Schottky wrap gate single electron transistor with a normal-incident of a CH_3OH gas laser with the frequency 2. 54THz.The change of source-drain current induced by THz photons shows that a satellite peak is generated beside the resonance peak. THz photon energy can be characterized by the difference of gate voltage positions between the resonance peak and satellite peak. This indicates that the satellite peak exactly results from the THz photon-assisted tunneling. Both experimental results and theoretical analysis show that a narrow spacing of double barriers is more effective for the enhancement of THz response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Practical realisation of quantum information science is a challenge being addressed by researchers employing various technologies. One of them is based on quantum dots (QD), usually referred to as artificial atoms. Being capable to emit single and polarization entangled photons, they are attractive as sources of quantum bits (qubits) which can be relatively easily integrated into photonic circuits using conventional semiconductor technologies. However, the dominant self-assembled QD systems suffer from asymmetry related problems which modify the energetic structure. The main issue is the degeneracy lifting (the fine-structure splitting, FSS) of an optically allowed neutral exciton state which participates in a polarization-entanglement realisation scheme. The FSS complicates polarization-entanglement detection unless a particular FSS manipulation technique is utilized to reduce it to vanishing values, or a careful selection of intrinsically good candidates from the vast number of QDs is carried out, preventing the possibility of constructing vast arrays of emitters on the same sample. In this work, site-controlled InGaAs QDs grown on (111)B oriented GaAs substrates prepatterned with 7.5 μm pitch tetrahedrons were studied in order to overcome QD asymmetry related problems. By exploiting an intrinsically high rotational symmetry, pyramidal QDs were shown as polarization-entangled photon sources emitting photons with the fidelity of the expected maximally entangled state as high as 0.721. It is the first site-controlled QD system of entangled photon emitters. Moreover, the density of such emitters was found to be as high as 15% in some areas: the density much higher than in any other QD system. The associated physical phenomena (e.g., carrier dynamic, QD energetic structure) were studied, as well, by different techniques: photon correlation spectroscopy, polarization-resolved microphotoluminescence and magneto-photoluminescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15-20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strong evidence of a single-photon tunneling effect, a direct analog of single-electron tunneling, has been obtained in the measurements of light tunneling through individual subwavelength pinholes in a gold film covered with a layer of polydiacetylene. The transmission of some pinholes reached saturation because of the optical nonlinearity of polydiacetylene at a very low light intensity of a few thousand photons per second. This result is explained theoretically in terms of a "photon blockade," similar to the Coulomb blockade phenomenon observed in single-electron tunneling experiments. Single-photon tunneling may find applications in the fields of quantum communication and information processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To measure action spectra for the induction of single- strand breaks (SSB) and double-strand breaks (DSB) in plasmid DNA by low-energy photons and provide estimates for the energy dependence of strand-break formation important for track-structure simulations of DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of bipartite bosonic systems, two notions of classicality of correlations can be defined: P-classicality, based on the properties of the Glauber-Sudarshan P-function; and C-classicality, based on the entropic quantum discord. It has been shown that these two notions are maximally inequivalent in a static (metric) sense -- as they coincide only on a set of states of zero measure. We extend and reinforce quantitatively this inequivalence by addressing the dynamical relation between these types of non-classicality in a paradigmatic quantum-optical setting: the linear mixing at a beam splitter of a single-mode Gaussian state with a thermal reference state. Specifically, we show that almost all P-classical input states generate outputs that are not C-classical. Indeed, for the case of zero thermal reference photons, the more P-classical resources at the input the less C-classicality at the output. In addition, we show that the P-classicality at the input -- as quantified by the non-classical depth -- does instead determine quantitatively the potential of generating output entanglement. This endows the non-classical depth with a new operational interpretation: it gives the maximum number of thermal reference photons that can be mixed at a beam splitter without destroying the output entanglement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three promising variants of autofluorescent proteins have been analyzed photophysically for their proposed use in single-molecule microscopy studies in living cells to compare their superiority to other fluorescent proteins previously reported regarding the number of photons emitted. The first variant under investigation the F46L mutant of eYFP has a 10% greater photon emission rate and > 50% slower photobleaching rate on average than the standard eYFP fluorophore. The monomeric red fluorescent protein (mRFP) has a fivefold lower photon emission rate, likely due to the monomeric content, and also a tenfold faster photobleaching rate than the DsRed fluorescent protein. In contrast, the previously reported eqfp611 has a 50% lower emission rate yet photobleaches more than a factor 2 slowly. We conclude that the F46L YFP and the eqfp611 are superior new options for single molecule imaging and tracking studies in living cells. Studies were also performed on the effects of forced quenching of multiple fluorescent proteins in sub-micrometer regions that would show the effects of dimerization at low concentration levels of fluorescent proteins and also indicate corrections to stoichiometry patterns with fluorescent proteins previously in print. We also introduce properties at the single molecule level of new FRET pairs with combinations of fluorescent proteins and artificial fluorophores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform a detailed analysis of the potentiality of the CERN Large Hadron Collider to study the single production of leptoquarks via pp→e±q→ leptoquark →e± q, with e± generated by the splitting of photons radiated by the protons. Working with the most general SU(2)L⊗U( 1 )Y invariant effective Lagrangian for scalar and vector leptoquarks, we analyze in detail the leptoquark signals and backgrounds that lead to a final state containing an e± and a hard jet with approximately balanced transverse momenta. Our results indicate that the LHC will be able to discover leptoquarks with masses up to 2-3 TeV, depending on their type, for Yukawa couplings of the order of the electromagnetic one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sample scanning confocal optical microscope (SCOM) was designed and constructed in order to perform local measurements of fluorescence, light scattering and Raman scattering. This instrument allows to measure time resolved fluorescence, Raman scattering and light scattering from the same diffraction limited spot. Fluorescence from single molecules and light scattering from metallic nanoparticles can be studied. First, the electric field distribution in the focus of the SCOM was modelled. This enables the design of illumination modes for different purposes, such as the determination of the three-dimensional orientation of single chromophores. Second, a method for the calculation of the de-excitation rates of a chromophore was presented. This permits to compare different detection schemes and experimental geometries in order to optimize the collection of fluorescence photons. Both methods were combined to calculate the SCOM fluorescence signal of a chromophore in a general layered system. The fluorescence excitation and emission of single molecules through a thin gold film was investigated experimentally and modelled. It was demonstrated that, due to the mediation of surface plasmons, single molecule fluorescence near a thin gold film can be excited and detected with an epi-illumination scheme through the film. Single molecule fluorescence as close as 15nm to the gold film was studied in this manner. The fluorescence dynamics (fluorescence blinking and excited state lifetime) of single molecules was studied in the presence and in the absence of a nearby gold film in order to investigate the influence of the metal on the electronic transition rates. The trace-histogram and the autocorrelation methods for the analysis of single molecule fluorescence blinking were presented and compared via the analysis of Monte-Carlo simulated data. The nearby gold influences the total decay rate in agreement to theory. The gold presence produced no influence on the ISC rate from the excited state to the triplet but increased by a factor of 2 the transition rate from the triplet to the singlet ground state. The photoluminescence blinking of Zn0.42Cd0.58Se QDs on glass and ITO substrates was investigated experimentally as a function of the excitation power (P) and modelled via Monte-Carlo simulations. At low P, it was observed that the probability of a certain on- or off-time follows a negative power-law with exponent near to 1.6. As P increased, the on-time fraction reduced on both substrates whereas the off-times did not change. A weak residual memory effect between consecutive on-times and consecutive off-times was observed but not between an on-time and the adjacent off-time. All of this suggests the presence of two independent mechanisms governing the lifetimes of the on- and off-states. The simulated data showed Poisson-distributed off- and on-intensities, demonstrating that the observed non-Poissonian on-intensity distribution of the QDs is not a product of the underlying power-law probability and that the blinking of QDs occurs between a non-emitting off-state and a distribution of emitting on-states with different intensities. All the experimentally observed photo-induced effects could be accounted for by introducing a characteristic lifetime tPI of the on-state in the simulations. The QDs on glass presented a tPI proportional to P-1 suggesting the presence of a one-photon process. Light scattering images and spectra of colloidal and C-shaped gold nano-particles were acquired. The minimum size of a metallic scatterer detectable with the SCOM lies around 20 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a multichannel tomographic technique to detect fluorescent objects embedded in thick (6.4 cm) tissue-like turbid media using early-arriving photons. The experiments use picosecond laser pulses and a streak camera with single photon counting capability to provide short time resolution and high signal-to-noise ratio. The tomographic algorithm is based on the Laplace transform of an analytical diffusion approximation of the photon migration process and provides excellent agreement between the actual positions of the fluorescent objects and the experimental estimates. Submillimeter localization accuracy and 4- to 5-mm resolution are demonstrated. Moreover, objects can be accurately localized when fluorescence background is present. The results show the feasibility of using early-arriving photons to image fluorescent objects embedded in a turbid medium and its potential in clinical applications such as breast tumor detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have elucidated how the absorption of a photon in a rod or cone cell leads to the generation of the amplified neural signal that is transmitted to higher-order visual neurons. Photoexcited visual pigment activates the GTP-binding protein transducin, which in turn stimulates cGMP phosphodiesterase. This enzyme hydrolyzes cGMP, allowing cGMP-gated cationic channels in the surface membrane to close, hyperpolarize the cell, and modulate transmitter release at the synaptic terminal. The kinetics of reactions in the cGMP cascade limit the temporal resolution of the visual system as a whole, while statistical fluctuations in the reactions limit the reliability of detection of dim light. Much interest now focuses on the processes that terminate the light response and dynamically regulate amplification in the cascade, causing the single photon response to be reproducible and allowing the cell to adapt in background light. A light-induced fall in the internal free Ca2+ concentration coordinates negative feedback control of amplification. The fall in Ca2+ stimulates resynthesis of cGMP, antagonizes rhodopsin's catalytic activity, and increases the affinity of the light-regulated cationic channel for cGMP. We are using physiological methods to study the molecular mechanisms that terminate the flash response and mediate adaptation. One approach is to observe transduction in truncated, dialyzed photoreceptor cells whose internal Ca2+ and nucleotide concentrations are under experimental control and to which exogenous proteins can be added. Another approach is to observe transduction in transgenic mouse rods in which specific proteins within the cascade are altered or deleted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The obtention of spontaneous Raman photons is analyzed in singly charged p-doped quantum dots in the absence of an external magnetic field. The use of a far detuned single driving laser allows to obtain a Raman photon line which exhibits subnatural linewidth, and whose center can be tuned by changing the detuning and/or the Rabi frequency of the driving field. The Raman photons are produced along the undriven transition and they arise from the weak interaction of the trion states with the nuclear spins. The operating point for the gate voltage of the heterostructure can also be used to modify the linewidth and the peak value of the fluorescent signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K: spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed the photoluminescence intermittency generated by a single paramagnetic spin localized in an individual semiconductor quantum dot. The statistics of the photons emitted by the quantum dot reflect the quantum fluctuations of the localized spin interacting with the injected carriers. Photon correlation measurements, which are reported here, reveal unique signatures of these fluctuations. A phenomenological model is proposed to quantitatively describe these observations, allowing a measurement of the spin dynamics of an individual magnetic atom at zero magnetic field. These results demonstrate the existence of an efficient spin-relaxation channel arising from a spin exchange with individual carriers surrounding the quantum dot. A theoretical description of a spin-flip mechanism involving spin exchange with surrounding carriers gives relaxation times in good agreement with the measured dynamics.