401 resultados para Septic
Resumo:
Objective To evaluate the changes in tissue perfusion parameters in dogs with severe sepsis/septic shock in response to goal-directed hemodynamic optimization in the ICU and their relation to outcome. Design Prospective observational study. Setting ICU of a veterinary university medical center. Animals Thirty dogs with severe sepsis or septic shock caused by pyometra who underwent surgery and were admitted to the ICU. Measurements and Main Results Severe sepsis was defined as the presence of sepsis and sepsis-induced dysfunction of one or more organs. Septic shock was defined as the presence of severe sepsis plus hypotension not reversed with fluid resuscitation. After the presumptive diagnosis of sepsis secondary to pyometra, blood samples were collected and clinical findings were recorded. Volume resuscitation with 0.9% saline solution and antimicrobial therapy were initiated. Following abdominal ultrasonography and confirmation of increased uterine volume, dogs underwent corrective surgery. After surgery, the animals were admitted to the ICU, where resuscitation was guided by the clinical parameters, central venous oxygen saturation (ScvO2), lactate, and base deficit. Between survivors and nonsurvivors it was observed that the ScvO2, lactate, and base deficit on ICU admission were each related independently to death (P = 0.001, P = 0.030, and P < 0.001, respectively). ScvO2 and base deficit were found to be the best discriminators between survivors and nonsurvivors as assessed via receiver operator characteristic curve analysis. Conclusion Our study suggests that ScvO2 and base deficit are useful in predicting the prognosis of dogs with severe sepsis and septic shock; animals with a higher ScvO2 and lower base deficit at admission to the ICU have a lower probability of death.
Resumo:
Once rare, septic shock (SS) due to disseminated fungal infections has been increasingly reported due to a growing number of immunocompromised patients, but remains rare in non-immune-compromised individuals. In paracoccidioidomycosis, it has been described in only three patients with the severe, acute form of the disease. We describe the development of a refractory, fatal septic shock due to a severe disseminated chronic form of paracoccidioidomycosis in an older woman without any other microbial insults. A striking event in the evolution of her case was the severe depletion of lymphocytes from the peripheral blood and lymphoid organs. Lymphocyte depletion due to apoptosis is described in the late phase of sepsis and can contribute both to immunosuppression and the progression of SS. The possible mechanisms involved in the induction of SS in the chronic form of paracoccidioidomycosis are discussed.
Resumo:
Abstract Introduction Several studies link hematological dysfunction to severity of sepsis. Previously we showed that platelet-derived microparticles from septic patients induce vascular cell apoptosis through the NADPH oxidase-dependent release of superoxide. We sought to further characterize the microparticle-dependent vascular injury pathway. Methods During septic shock there is increased generation of thrombin, TNF-α and nitric oxide (NO). Human platelets were exposed for 1 hour to the NO donor diethylamine-NONOate (0.5 μM), lipopolysaccharide (LPS; 100 ng/ml), TNF-α (40 ng/ml), or thrombin (5 IU/ml). Microparticles were recovered through filtration and ultracentrifugation and analyzed by electron microscopy, flow cytometry or Western blotting for protein identification. Redox activity was characterized by lucigenin (5 μM) or coelenterazine (5 μM) luminescence and by 4,5-diaminofluorescein (10 mM) and 2',7'-dichlorofluorescein (10 mM) fluorescence. Endothelial cell apoptosis was detected by phosphatidylserine exposure and by measurement of caspase-3 activity with an enzyme-linked immunoassay. Results Size, morphology, high exposure of the tetraspanins CD9, CD63, and CD81, together with low phosphatidylserine, showed that platelets exposed to NONOate and LPS, but not to TNF-α or thrombin, generate microparticles similar to those recovered from septic patients, and characterize them as exosomes. Luminescence and fluorescence studies, and the use of specific inhibitors, revealed concomitant superoxide and NO generation. Western blots showed the presence of NO synthase II (but not isoforms I or III) and of the NADPH oxidase subunits p22phox, protein disulfide isomerase and Nox. Endothelial cells exposed to the exosomes underwent apoptosis and caspase-3 activation, which were inhibited by NO synthase inhibitors or by a superoxide dismutase mimetic and totally blocked by urate (1 mM), suggesting a role for the peroxynitrite radical. None of these redox properties and proapoptotic effects was evident in microparticles recovered from platelets exposed to thrombin or TNF-α. Conclusion We showed that, in sepsis, NO and bacterial elements are responsible for type-specific platelet-derived exosome generation. Those exosomes have an active role in vascular signaling as redox-active particles that can induce endothelial cell caspase-3 activation and apoptosis by generating superoxide, NO and peroxynitrite. Thus, exosomes must be considered for further developments in understanding and treating vascular dysfunction in sepsis.
Resumo:
Abstract Introduction Mechanisms underlying inotropic failure in septic shock are incompletely understood. We previously identified the presence of exosomes in the plasma of septic shock patients. These exosomes are released mainly by platelets, produce superoxide, and induce apoptosis in vascular cells by a redox-dependent pathway. We hypothesized that circulating platelet-derived exosomes could contribute to inotropic dysfunction of sepsis. Methods We collected blood samples from 55 patients with septic shock and 12 healthy volunteers for exosome separation. Exosomes from septic patients and healthy individuals were investigated concerning their myocardial depressant effect in isolated heart and papillary muscle preparations. Results Exosomes from the plasma of septic patients significantly decreased positive and negative derivatives of left ventricular pressure in isolated rabbit hearts or developed tension and its first positive derivative in papillary muscles. Exosomes from healthy individuals decreased these variables non-significantly. In hearts from rabbits previously exposed to endotoxin, septic exosomes decreased positive and negative derivatives of ventricular pressure. This negative inotropic effect was fully reversible upon withdrawal of exosomes. Nitric oxide (NO) production from exosomes derived from septic shock patients was demonstrated by fluorescence. Also, there was an increase in myocardial nitrate content after exposure to septic exosomes. Conclusion Circulating platelet-derived exosomes from septic patients induced myocardial dysfunction in isolated heart and papillary muscle preparations, a phenomenon enhanced by previous in vivo exposure to lipopolysaccharide. The generation of NO by septic exosomes and the increased myocardial nitrate content after incubation with exosomes from septic patients suggest an NO-dependent mechanism that may contribute to myocardial dysfunction of sepsis.
Resumo:
Abstract Background Septic shock is the first cause of death in Intensive Care Units. Despite experimental data showing increased inflammatory response of aged animals following infection, the current accepted hypothesis claims that aged patients are immunocompromised, when compared to young individuals. Results Here, we describe a prospective cohort study designed to analyze the immune profile of this population. Conclusion Older people are as immunocompetent as the young individual, regarding the cytokines, chemokines and growth factors response to devastating infection.
Resumo:
The aim of this survey was to investigate clinicians' current approach to the haemodynamic management and resuscitation endpoints in septic shock.
Resumo:
ABSTRACT : INTRODUCTION : V2-receptor (V2R) stimulation potentially aggravates sepsis-induced vasodilation, fluid accumulation and microvascular thrombosis. Therefore, the present study was performed to determine the effects of a first-line therapy with the selective V2R-antagonist (Propionyl1-D-Tyr(Et)2-Val4-Abu6-Arg8,9)-Vasopressin on cardiopulmonary hemodynamics and organ function vs. the mixed V1aR/V2R-agonist arginine vasopressin (AVP) or placebo in an established ovine model of septic shock. METHODS : After the onset of septic shock, chronically instrumented sheep were randomly assigned to receive first-line treatment with the selective V2R-antagonist (1 g/kg per hour), AVP (0.05 g/kg per hour), or normal saline (placebo, each n = 7). In all groups, open-label norepinephrine was additionally titrated up to 1 g/kg per minute to maintain mean arterial pressure at 70 ± 5 mmHg, if necessary. RESULTS : Compared to AVP- and placebo-treated animals, the selective V2R-antagonist stabilized cardiopulmonary hemodynamics (mean arterial and pulmonary artery pressure, cardiac index) as effectively and increased intravascular volume as suggested by higher cardiac filling pressures. Furthermore, left ventricular stroke work index was higher in the V2R-antagonist group than in the AVP group. Notably, metabolic (pH, base excess, lactate concentrations), liver (transaminases, bilirubin) and renal (creatinine and blood urea nitrogen plasma levels, urinary output, creatinine clearance) dysfunctions were attenuated by the V2R-antagonist when compared with AVP and placebo. The onset of septic shock was associated with an increase in AVP plasma levels as compared to baseline in all groups. Whereas AVP plasma levels remained constant in the placebo group, infusion of AVP increased AVP plasma levels up to 149 ± 21 pg/mL. Notably, treatment with the selective V2R-antagonist led to a significant decrease of AVP plasma levels as compared to shock time (P < 0.001) and to both other groups (P < 0.05 vs. placebo; P < 0.001 vs. AVP). Immunohistochemical analyses of lung tissue revealed higher hemeoxygenase-1 (vs. placebo) and lower 3-nitrotyrosine concentrations (vs. AVP) in the V2R-antagonist group. In addition, the selective V2R-antagonist slightly prolonged survival (14 ± 1 hour) when compared to AVP (11 ± 1 hour, P = 0.007) and placebo (11 ± 1 hour, P = 0.025). CONCLUSIONS : Selective V2R-antagonism may represent an innovative therapeutic approach to attenuate multiple organ dysfunction in early septic shock.
Resumo:
Fish oil (FO) has immunomodulating effects and may improve organ function and outcome in critically ill patients. This retrospective, propensity-matched cohort study investigates the effects of early intravenous FO supplementation on organ failure in patients with septic shock from abdominal infection.
Resumo:
It is unknown whether body-mass index (BMI) and commonly defined BMI categories are associated with mortality in patients with septic shock.
Resumo:
A role of nociceptin and its receptor (NOP) in pain and immune function has been suggested. The hypothesis was that mRNA expression of NOP and the nociceptin precursor pre-pronociceptin (pN/OFQ) in peripheral blood cells differs in end-stage cancer patients suffering from chronic pain and septic intensive care unit (ICU) patients compared with healthy controls.
Resumo:
To evaluate the association between concomitant arginine-vasopressin (AVP)/hydrocortisone therapy and mortality in severe septic shock patients.
Resumo:
: Sepsis-associated changes of the arachidonic acid metabolism and the utility of arachidonic acid metabolites for the diagnosis of sepsis have been poorly investigated so far. Therefore, the primary objective of our study was to screen for differentially regulated arachidonic acid metabolites in septic patients using a lipopolysaccharide whole-blood model and to investigate their diagnostic potential.
Resumo:
The relevance of tissue oxygenation in the pathogenesis of organ dysfunction during sepsis is controversial. We compared oxygen transport, lactate metabolism, and mitochondrial function in pigs with septic shock, cardiogenic shock, or hypoxic hypoxia.
Resumo:
The search for an effective treatment for septic arthritis is ongoing. Current therapies are expensive since they require repeated joint lavage and long term antibiotic treatment. Local application of antimicrobial drugs is advantageous because high concentrations can be attained at the infection site, although repeated injections increase the risk of superinfection of the joint. Thus, slow release formulations, which have the advantage of local treatment yet single application of the drug, are appealing. Antibiotics used in slow release formulations are selected for tissue compatibility, an appropriate antibacterial spectrum, and stability both during the mixing procedure and within the carrier during the release period. Ideally the carriers should be bioresorbable. Promising reports on the clinical use of poly(methyl methacrylate) (PMMA) mixed with several different antibiotics, and of collagen sponges impregnated with gentamicin, should encourage the search for formulations optimally adapted to veterinary medical requirements.
Resumo:
Current therapy of septic/vasodilatory cardiovascular failure includes volume resuscitation and infusion of inotropic and vasopressor agents. Norepinephrine is the first-line vasoconstrictor, and can stabilize hemodynamic variables in most patients. Nonetheless, irreversible cardiovascular failure which is resistant to conventional hemodynamic therapies still is the main cause of death in patients with severe sepsis and septic shock. In such advanced, catecholamine-resistant shock states, arginine-vasopressin (AVP) has repeatedly caused an increase in mean arterial blood pressure, a decrease in toxic norepinephrine-dosages, as well as further beneficial hemodynamic, endocrinologic and renal effects. Although AVP exerted negative inotropic effects in previous clinical trials and in selected animal experiments, a continuous low-dose AVP infusion during advanced septic/vasodilatory shock caused a decrease in cardiac index only in patients with a hyperdynamic circulation. Adverse effects on gastrointestinal circulation and the systemic microcirculation can not be excluded, but have not yet been confirmed in clinical prospective trials. Negative side effects of a supplementary AVP therapy are an increase in total bilirubin concentrations, and a decrease in platelet count. A transient increase in hepatic transaminases during AVP infusion is most likely related to preceding hypotensive episodes. Important points which must be considered when using AVP as a "rescue vasopressor" in septic/vasodilatory shock states are: 1) AVP infusion only in advanced shock states that can not be adequately reversed by conventional hemodynamic therapy (e.g. norepinephrine >0,5-0,6 mug/kg/min), 2) presence of normovolemia, 3) AVP infusion only in combination with norepinephrine, 4) strict avoidance of bolus injections and dosages >4 IU/h. Effects of a supplementary AVP infusion in advanced vasodilatory shock on survival are currently examined in a large, prospective multicenter trial in North America and Australia.