993 resultados para Sensory Interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the addition of a commercial enriched glutathione inactive dry yeast oenological preparation in the volatile and sensory properties of industrially manufactured rosé Grenache wines was evaluated during their shelf-life. In addition, triangle tests were performed at different times during wine aging (among 1 and 9 months) to determine the sensory differences between wines with and without glutathione inactive dry yeast preparations. Descriptive sensory analysis with a trained panel was carried out when sensory differences in the triangle test were noticed. In addition, consumer tests were performed in order to investigate consumers’ acceptability of wines. Results revealed significant sensory differences between control and glutathione inactive dry yeast wines after 9 months of aging. At that time, glutathione inactive dry yeast wines were more intense in fruity aromas (strawberry, banana) and less intense in yeast notes than control wine. The impact of the glutathione inactive dry yeast in the aroma might be the consequence of different effects that these preparations could induce in wine composition: modification of yeast byproducts during fermentation, release of volatile compounds from inactive dry yeast, interaction of wine volatile compounds with yeast macromolecules from inactive dry yeast and a possible antioxidant effect of the glutathione released by the inactive dry yeast preparation on some specific volatile compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leptin is a circulating protein involved in the long-term regulation of food intake and body weight. Cholecystokinin (CCK) is released postprandially and elicits satiety signals. We investigated the interaction between leptin and CCK-8 in the short-term regulation of food intake induced by 24-hr fasting in lean mice. Leptin, injected intraperitoneally (i.p.) at low doses (4–120 μg/kg), which did not influence feeding behavior for the first 3 hr postinjection, decreased food intake dose dependently by 47–83% during the first hour when coinjected with a subthreshold dose of CCK. Such an interaction was not observed between leptin and bombesin. The food-reducing effect of leptin injected with CCK was not associated with alterations in gastric emptying or locomotor behavior. Leptin–CCK action was blocked by systemic capsaicin at a dose inducing functional ablation of sensory afferent fibers and by devazepide, a CCK-A receptor antagonist but not by the CCK-B receptor antagonist, L-365,260. The decrease in food intake which occurs 5 hr after i.p. injection of leptin alone was also blunted by devazepide. Coinjection of leptin and CCK enhanced the number of Fos-positive cells in the hypothalamic paraventricular nucleus by 60%, whereas leptin or CCK alone did not modify Fos expression. These results indicate the existence of a functional synergistic interaction between leptin and CCK leading to early suppression of food intake which involves CCK-A receptors and capsaicin-sensitive afferent fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The halobacterial phototaxis receptors sensory rhodopsin I and II (SRI, SRII) enable the bacteria to seek optimal light conditions for ion pumping by bacteriorhodopsin and/or halorhodopsin. The incoming signal is transferred across the plasma membrane by means of receptor-specific transducer proteins that bind tightly to their corresponding photoreceptors. To investigate the receptor/transducer interaction, advantage is taken of the observation that both SRI and SRII can function as proton pumps. SRI from Halobacterium salinarum, which triggers the positive phototaxis, the photophobic receptor SRII from Natronobacterium pharaonis (pSRII), as well as the mutant pSRII-F86D were expressed in Xenopus oocytes. Voltage-clamp studies confirm that SRI and pSRII function as light-driven, outwardly directed proton pumps with a much stronger voltage dependence than the ion pumps bacteriorhodopsin and halorhodopsin. Coexpression of SRI and pSRII-F86D with their corresponding transducers suppresses the proton transport, revealing a tight binding and specific interaction of the two proteins. These latter results may be exploited to further analyze the binding interaction of the photoreceptors with their downstream effectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutral residue replacements were made of 21 acidic and basic residues within the N-terminal half of the Halobacterium salinarium signal transducer HtrI [the halobacterial transducer for sensory rhodopsin I (SRI)] by site-specific mutagenesis. The replacements are all within the region of HtrI that we previously concluded from deletion analysis to contain sites of interaction with the phototaxis receptor SRI. Immunoblotting shows plasmid expression of the htrI-sopI operon containing the mutations produces SRI and mutant HtrI in cells at near wild-type levels. Six of the HtrI mutations perturb photochemical kinetics of SRI and one reverses the phototaxis response. Substitution with neutral amino acids of Asp-86, Glu-87, and Glu-108 accelerate, and of Arg-70, Arg-84, and Arg-99 retard, the SRI photocycle. Opposite effects on photocycle rate cancel in double mutants containing one replaced acidic and one replaced basic residue. Laser flash spectroscopy shows the kinetic perturbations are due to alteration of the rate of reprotonation of the retinylidene Schiff base. All of these mutations permit normal attractant and repellent signaling. On the other hand, the substitution of Glu-56 with the isosteric glutamine converts the normally attractant effect of orange light to a repellent signal in vivo at neutral pH (inverted signaling). Low pH corrects the inversion due to Glu-56 -> Gln and the apparent pK of the inversion is increased when arginine is substituted at position 56. The results indicate that the cytoplasmic end of transmembrane helix-2 and the initial part of the cytoplasmic domain contain interaction sites with SRI. To explain these and previous results, we propose a model in which (i) the HtrI region identified here forms part of an electrostatic bonding network that extends through the SRI protein and includes its photoactive site; (ii) alteration of this network by photoisomerization-induced Schiff base deprotonation and reprotonation shifts HtrI between attractant and repellent conformations; and (iii) HtrI mutations and extracellular pH alter the equilibrium ratios of these conformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we investigate the coordination between rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow joint-complex, while manipulating the intersegmental dynamics by means of a 2-degrees of freedom (df) robot arm. We hypothesized that constraints imposed by the structure of the neuromuscular-skeletal system would (1) result in predominant pattern(s) of coordination in the absence of interaction torques and (2) influence the capabilities of participants to exploit artificially induced interaction torques. Two experiments were conducted in which different conditions of interaction torques were applied on the SP-axis as a function of FE movements. These conditions promoted different patterns of coordination between the 2-df. Control trials conducted in the absence of interaction torques revealed that both the in-phase (supination synchronized with flexion) and the anti-phase (pronation synchronized with flexion) patterns were spontaneously established by participants. The predominance of these patterns of coordination is explained in terms of the mechanical action of bi-articular muscles acting at the elbow joint-complex, and in terms of the reflexes that link the activity of the muscles involved. Results obtained in the different conditions of interaction torques revealed that those neuromuscular-skeletal constraints either impede or favor the exploitation of intersegmental dynamics depending on the context. Interaction torques were indeed found to be exploited to a greater extent in conditions in which the profiles of interaction torques favored one of the two predominant patterns of coordination (i.e., in-phase or anti-phase) as opposed to other patterns of coordination (e.g., 90 degrees or 270 degrees). Those results are discussed in relation to recent studies reporting exploitation of interaction torques in the context of rhythmic movements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile technology has been one of the major growth areas in computing over recent years (Urbaczewski, Valacich, & Jessup, 2003). Mobile devices are becoming increasingly diverse and are continuing to shrink in size and weight. Although this increases the portability of such devices, their usability tends to suffer. Fuelled almost entirely by lack of usability, users report high levels of frustration regarding interaction with mobile technologies (Venkatesh, Ramesh, & Massey, 2003). This will only worsen if interaction design for mobile technologies does not continue to receive increasing research attention. For the commercial benefit of mobility and mobile commerce (m-commerce) to be fully realized, users’ interaction experiences with mobile technology cannot be negative. To ensure this, it is imperative that we design the right types of mobile interaction (m-interaction); an important prerequisite for this is ensuring that users’ experience meets both their sensory and functional needs (Venkatesh, Ramesh, & Massey, 2003). Given the resource disparity between mobile and desktop technologies, successful electronic commerce (e-commerce) interface design and evaluation does not necessarily equate to successful m-commerce design and evaluation. It is, therefore, imperative that the specific needs of m-commerce are addressed–both in terms of design and evaluation. This chapter begins by exploring the complexities of designing interaction for mobile technology, highlighting the effect of context on the use of such technology. It then goes on to discuss how interaction design for mobile devices might evolve, introducing alternative interaction modalities that are likely to affect that future evolution. It is impossible, within a single chapter, to consider each and every potential mechanism for interacting with mobile technologies; to provide a forward-looking flavor of what might be possible, this chapter focuses on some more novel methods of interaction and does not, therefore, look at the typical keyboard and visual display-based interaction which, in essence, stem from the desktop interaction design paradigm. Finally, this chapter touches on issues associated with effective evaluation of m-interaction and mobile application designs. By highlighting some of the issues and possibilities for novel m-interaction design and evaluation, we hope that future designers will be encouraged to “think out of the box” in terms of their designs and evaluation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes a surgical robotic device that is able to discriminate tissue interfaces and other controlling parameters ahead of the drill tip. The advantage in such a surgery is that the tissues at the interfaces can be preserved. A smart tool detects ahead of the tool point and is able to control the interaction with respect to the flexing tissue, to avoid penetration or to control the extent of protrusion with respect to the position of the tissue. For surgical procedures, where precision is required, the tool offers significant benefit. To interpret the drilling conditions and the conditions leading up to breakthrough at a tissue interface, a sensing scheme is used that discriminates between the variety of conditions posed in the drilling environment. The result is a fully autonomous system, which is able to respond to the tissue type, behaviour, and deflection in real-time. The system is also robust in terms of disturbances encountered in the operating theatre. The device is pragmatic. It is intuitive to use, efficient to set up, and uses standard drill bits. The micro-drill, which has been used to prepare cochleostomies in the theatre, was used to remove the bone tissue leaving the endosteal membrane intact. This has enabled the preservation of sterility and the drilling debris to be removed prior to the insertion of the electrode. It is expected that this technique will promote the preservation of hearing and reduce the possibility of complications. The article describes the device (including simulated drill progress and hardware set-up) and the stages leading up to its use in the theatre. © 2010 Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

User Quality of Experience (QoE) is a subjective entity and difficult to measure. One important aspect of it, User Experience (UX), corresponds to the sensory and emotional state of a user. For a user interacting through a User Interface (UI), precise information on how they are using the UI can contribute to understanding their UX, and thereby understanding their QoE. As well as a user’s use of the UI such as clicking, scrolling, touching, or selecting, other real-time digital information about the user such as from smart phone sensors (e.g. accelerometer, light level) and physiological sensors (e.g. heart rate, ECG, EEG) could contribute to understanding UX. Baran is a framework that is designed to capture, record, manage and analyse the User Digital Imprint (UDI) which, is the data structure containing all user context information. Baran simplifies the process of collecting experimental information in Human and Computer Interaction (HCI) studies, by recording comprehensive real-time data for any UI experiment, and making the data available as a standard UDI data structure. This paper presents an overview of the Baran framework, and provides an example of its use to record user interaction and perform some basic analysis of the interaction.