957 resultados para Semiconductor photocatalysis, UV LEDs, Langmuir-Hinshelwood, Photonic efficiency
Resumo:
Even though titanium dioxide photocatalysis has been promoted as a leading green technology for water purification, many issues have hindered its application on a large commercial scale. For the materials scientist the main issues have centred the synthesis of more efficient materials and the investigation of degradation mechanisms; whereas for the engineers the main issues have been the development of appropriate models and the evaluation of intrinsic kinetics parameters that allow the scale up or re-design of efficient large-scale photocatalytic reactors. In order to obtain intrinsic kinetics parameters the reaction must be analysed and modelled considering the influence of the radiation field, pollutant concentrations and fluid dynamics. In this way, the obtained kinetic parameters are independent of the reactor size and configuration and can be subsequently used for scale-up purposes or for the development of entirely new reactor designs. This work investigates the intrinsic kinetics of phenol degradation over titania film due to the practicality of a fixed film configuration over a slurry. A flat plate reactor was designed in order to be able to control reaction parameters that include the UV irradiance, flow rates, pollutant concentration and temperature. Particular attention was paid to the investigation of the radiation field over the reactive surface and to the issue of mass transfer limited reactions. The ability of different emission models to describe the radiation field was investigated and compared to actinometric measurements. The RAD-LSI model was found to give the best predictions over the conditions tested. Mass transfer issues often limit fixed film reactors. The influence of this phenomenon was investigated with specifically planned sets of benzoic acid experiments and with the adoption of the stagnant film model. The phenol mass transfer coefficient in the system was calculated to be km,phenol=8.5815x10-7Re0.65(ms-1). The data obtained from a wide range of experimental conditions, together with an appropriate model of the system, has enabled determination of intrinsic kinetic parameters. The experiments were performed in four different irradiation levels (70.7, 57.9, 37.1 and 20.4 W m-2) and combined with three different initial phenol concentrations (20, 40 and 80 ppm) to give a wide range of final pollutant conversions (from 22% to 85%). The simple model adopted was able to fit the wide range of conditions with only four kinetic parameters; two reaction rate constants (one for phenol and one for the family of intermediates) and their corresponding adsorption constants. The intrinsic kinetic parameters values were defined as kph = 0.5226 mmol m-1 s-1 W-1, kI = 0.120 mmol m-1 s-1 W-1, Kph = 8.5 x 10-4 m3 mmol-1 and KI = 2.2 x 10-3 m3 mmol-1. The flat plate reactor allowed the investigation of the reaction under two different light configurations; liquid and substrate side illumination. The latter of particular interest for real world applications where light absorption due to turbidity and pollutants contained in the water stream to be treated could represent a significant issue. The two light configurations allowed the investigation of the effects of film thickness and the determination of the catalyst optimal thickness. The experimental investigation confirmed the predictions of a porous medium model developed to investigate the influence of diffusion, advection and photocatalytic phenomena inside the porous titania film, with the optimal thickness value individuated at 5 ìm. The model used the intrinsic kinetic parameters obtained from the flat plate reactor to predict the influence of thickness and transport phenomena on the final observed phenol conversion without using any correction factor; the excellent match between predictions and experimental results provided further proof of the quality of the parameters obtained with the proposed method.
Resumo:
Pilkington Glass Activ(TM) represents a possible suitable successor to P25 TiO2, especially as a benchmark photocatalyst film for comparing other photocatalyst or PSH self-cleaning films. Activ(TM) is a glass product with a clear, colourless, effectively invisible, photocatalytic coating of titania that also exhibits PSH. Although not as active as a film of P25 TiO2, Activ(TM) vastly superior mechanical stability, very reproducible activity and widespread commercial availability makes it highly attractive as a reference photocatalytic film. The photocatalytic and photo-induced superhydrophilitic (PSH) properties of Activ(TM) are studied in some detail and the results reported. Thus, the kinetics of stearic acid destruction (a 104 electron process) are zero order over the stearic acid range 4-129 monolayers and exhibit formal quantum efficiencies (FQE) of 0.7 X 10(-5) and 10.2 x 10(-5) molecules per photon when irradiated with light of 365 +/- 20 and 254 nm, respectively; the latter appears also to be the quantum yield for Activ(TM) at 254 nm. The kinetics of stearic acid destruction exhibit Langmuir-Hinshelwood-like saturation type kinetics as a function of oxygen partial pressure, with no destruction occurring in the absence of oxygen and the rate of destruction appearing the same in air and oxygen atmospheres. Further kinetic work revealed a Langmuir adsorption type constant for oxygen of 0.45 +/- 0.16 kPa(-1) and an activation energy of 19 +/- 1 Kj mol(-1). A study of the PSH properties of Activ(TM) reveals a high water contact angle (67) before ultra-bandgap irradiation reduced to 0degrees after prolonged irradiation. The kinetics of PSH are similar to those reported by others for sol-gel films using a low level of UV light. The kinetics of contact angle recovery in the dark appear monophasic and different to the biphasic kinetics reported recently by others for sol-gel films [J. Phys. Chem. B 107 (2003) 1028]. Overall, Activ(TM) appears a very suitable reference material for semiconductor film photocatalysis. (C) 2003 Elsevier Science B.V All rights reserved.
Resumo:
This review focuses on the heterogeneous photocatalytic treatment of organic dyes in air and water. Representative studies spanning approximately three decades are included in this review. These studies have mostly used titanium dioxide (TiO2) as the inorganic semiconductor photocatalyst of choice for decolorizing and decomposing the organic dye to mineralized products. Other semiconductors such as ZnO, CdS, WO3, and Fe2O3 have also been used, albeit to a much smaller extent. The topics covered include historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H2O2, ozonation, UV/O3, Fenton and photo-Fenton reactions), visible light-induced dye decomposition by sensitization mechanism, reaction intermediates and toxicity issues, and real-world process scenarios. © 2008 Elsevier B.V. All rights reserved.
Resumo:
The preparation and characterisation of a novel, UV-activated solvent-based, colourimetric indicator for O-2 is described, comprising a redox dye (methylene blue, MB), semiconductor photocatalyst (TiO2), and a sacrificial electron donor (SED), all dispersed/dissolved in a polymer medium (sulfonated polystyrene, SPS). Upon exposure, the indicator is readily photobleached as the MB is converted into its oxygen-sensitive, leuco form, LMB. Unlike its water-based counterpart, the recovery of the original colour is very slow (ca. 5 days cf. 6 min), probably due to the largely hydrophobic nature of the polymer encapsulation medium. The kinetics of film photobleaching appear to fit very well, in terms of: irradiance, [TiO2] and [MB], to the usual Langmuir-Hinshelwood type equation associated with a photocatalytic process. The glycerol appears not only to function as a SED, but also a plasticizer and medium for dye dissolution. The kinetics of colour recovery of the photobleached film appear directly dependent upon the ambient level of O-2 but shows a more complex dependence upon the relative humidity, RH. The photobleached film does not recover any of its colour over a 24 h period if the RH
Resumo:
The kinetics of liquid phase semiconductor photocatalytic and photoassisted reactions are an area of some debate, reignited recently by an article by Ollis(1) in which he proposed a simple pseudo- steady- state model to interpret the Langmuir- Hinshelwood type kinetics, commonly observed in such systems. In the current article, support for this model, over other models, is provided by a reinterpretation of the results of a study, reported initially in 1999,2 of the photoassisted mineralization of 4- chlorophenol, 4-CP, by titania films and dispersions as a function of incident light intensity, I. On the basis of this model, these results indicate that 4- CP is adsorbed more strongly on P25 TiO2 when it is in a dispersed, rather than a film form, due to a higher rate constant for adsorption, k(1). In addition, the kinetics of 4- CP removal appear to depend on I-beta where, beta = 1 or 0.6 for when the TiO2 is in a film or a dispersed form, respectively. These findings are discussed both in terms of the pseudo- steady- state model and other popular kinetic models.
Resumo:
High levels of ozone (typically 850 ppm) are readily decomposed by semiconductor photocatalysis, using a thin film of the semiconductor titanium dioxide (Degussa P25 TiO2) cast on a glass tube, and UVA light, i.e. light of energy greater than that of the bandgap of the semiconductor (ultra-bandgap light); in the absence of this light the thermal decomposition of ozone is relatively slow. The semiconductor films show no evidence of chemical or photochemical wear with repeated use. At high levels of ozone, i.e. 100 ppm less than or equal to [O-3] less than or equal to 1400 ppm, the initial rate of ozone decomposition by semiconductor photocatalysis is independent of [O-3], whereas, at lower ozone concentrations, i.e. 5 ppm less than or equal to [O-3] less than or equal to 100 ppm, the initial rate of ozone photodestruction decreases in a smooth, but non-linear, manner with decreasing [O-3]. The kinetics of ozone photodecomposition fit a Langmuir-Hinshelwood type kinetic equation and the possible mechanistic implications of these results are briefly discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The photonic efficiencies of films of Evonik (formerly Degussa) P25 TiO2 and carbon-modified TiO2 Kronos VLP 7000 samples are reported as a function of excitation wavelength (300–430 nm; FWHM ∼ 7.5 nm), i.e. the action spectra, for the degradation of stearic acid, a model organic for the photocatalytic destruction of solid surface organic pollutants. For each of these semiconductor photocatalysts, at 365 nm (FWHM = 18 nm), the dependence of the rate of degradation of stearic acid, upon the irradiance, I, is determined and the rate is found to be proportional to I0.65 and I0.82 for P25 and Kronos titania, respectively. Assuming this relationship holds at all wavelengths, the action spectra for two different semiconductor photocatalysts is modified by plotting, (RSA (rate of stearic acid destruction, units: molecules cm−2 s−1)/Iθ) vs. wavelength of excitation (λexcit), and both differ noticeably from those of the original (unmodified) action spectra, which are plots of (RSA/I = photonic efficiency, ξ) vs. λexcit. The shape of the modified action spectrum for P25 TiO2 is consistent with that reported by others for other organic mineralisation reactions and correlates well with diffuse reflectance data for P25 TiO2 (Kubelka–Munk plot), although there is some evidence that the active phase, in the photodegradation of stearic acid, is the anatase form present in P25. The unmodified and modified action spectra of the beige Kronos VLP 7000 TiO2 compound exhibits little or no activity in the visible i.e. (λexcit > 400 nm) and a peak at 350 nm. The Kronos powder contains a yellow/brown conjugated, extractable, organic sensitiser which has been identified by others as the species responsible for its reported photocatalytic visible light activity. But, irradiation of the Kronos powder film, with and without a stearic acid coating, in air, using UVA or visible light, bleaches rapidly (<60 min) most, if not all, of the little colour exhibited by the original Kronos powder. The photobleached form of the Kronos has a similar action spectrum to that of the unbleached form, which, in turn, appears very similar to that of P25 titania, at wavelengths >350 nm. It is proposed that the difference between the Kronos and P25 powder films at wavelengths <350 nm is due to a photodegradation-resistant, previously unidentified (but extractable using MeCN) UV-absorbing organic species in the former which screens the titania particles at these lower wavelengths. The implications of these observations are discussed briefly.
Resumo:
Solar water disinfection (SODIS) is a well-established inexpensive means of water disinfection in developing countries, but lacks an indicator to illustrate its end-point. A study of the solar UV dosage required for SODIS, in order to achieve a bacteria concentration below the detection limit for: Escherichia coli, Enterococcus spp. and Clostridium perfringens, in water in PET bottles, PE and PE/EVA bags showed disinfection to be most efficient in PE bags, with a solar UV (290–385 nm) dose of 389 kJ m−2 required. In parallel to the disinfection experiments, a range of polyoxometalate, semiconductor photocatalysis and photodegradable dye-based solar UV dosimeter indicators were tested under the same solar UV irradiation conditions. All three types of dosimeter produced indicators that largely and significantly change colour upon exposure to 389 kJ m−2 solar UV; further indicators are reported which change colour at higher doses and hence would be suitable for the less efficient SODIS containers tested. All indicators tested were robust, easy to use and inexpensive so as not to add significantly to the attractive low cost of SODIS. Furthermore, whilst semiconductor photocatalyst and photodegradable dye based indicators are disposable, one-use systems, the polyoxometalate based indicators recover colour in the dark overnight, allowing them to be reused, and hence further decreasing the cost of using indicators during the implementation of the SODIS method.
Resumo:
The photocatalytic performance of TiO(2)-SiMgO(x) ceramic plates for trichloroethylene abatement in gas phase has been evaluated under sun irradiance conditions. A continuous flow Pyrex glass reactor fixed on the focus of a compound parabolic collector has been used. The performance of the hybrid photocatalyst has been evaluated as the variation of TCE conversion and reaction products formation with the solar irradiance at different total gas flow, TCE concentration, and water vapour content. SiMgO(x) not only provides adsorbent properties to the photocatalyst, but it also allows the effective use of the material during low solar irradiance conditions. The adsorption-desorption phenomena play a pivotal role in the behaviour of the system. Thus, TCE conversion curves present two different branches when the sun irradiance increases (sunrise) or decreases (sunset). CO(2), COCl(2) and DCAC were the most relevant products detected. Meanwhile CO(2) concentration was insensitive to the branch analysed, COCl(2) or DCAC were not indicating the ability of these compounds to be adsorbed on the composite. An increase of the UV irradiation at total TCE conversion promotes the CO(2) selectivity. The excess of energy arriving to the reactor favours the direct reaction pathway to produce CO(2). The photonic efficiency, calculated as a function of the rate of CO(2) formation, decreases linearly with the solar irradiance up to around 2 mW cm(-2), where it becomes constant. For decontamination systems high TCE conversion is pursuit and then high solar irradiance values are required, in spite of lower photonic efficiency values. The present photocatalyst configuration, with only 17% of the reactor volume filled with the photoactive material, allows total TCE conversion for 150 ppm and 1 L min(-1) in a wide sun irradiance window from 2 to 4 mW cm(-2). The incorporation of water vapour leads to an increase of the CO(2) selectivity keeping the TCE conversion around 90%, although significant amounts of COCl(2) were observed. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
An investigation was made on the adsorption and kinetics of photodegradation of potassium hydrogenphthalate in an aqueous suspension of TiO2. Two models, Langmuir and Freundlich, were used to describe the adsorption process and the model proposed by Langmuir-Hinshelwood (L-H) was employed to describe the kinetics of the photodecomposition reactions of hydrogenphthalate. The results of the adsorptions were fitted to the models proposed by Langmuir and Freundlich. Adsorption was found to be a function of the temperature, with adsorption capacity increasing from 2.4 to 4.5 mg/g when the temperature rose from 20 to 30 degrees C. The kinetic model indicates that the rate constant, k, of the first order reaction, is high in the 10.0 to 100 mg/l interval, which is coherent with the low value of the adsorption constant, K. The results fitted to the L-H model led to an equation that, within the range of concentrations studied here, theoretically allows one to evaluate the photodegradation rate. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.
Resumo:
International audience
Resumo:
This study of photocatalytic oxidation of phenol over titanium dioxide films presents a method for the evaluation of true reaction kinetics. A flat plate reactor was designed for the specific purpose of investigating the influence of various reaction parameters, specifically photocatalytic film thickness, solution flow rate (1–8 l min−1), phenol concentration (20, 40 and 80 ppm), and irradiation intensity (70.6, 57.9, 37.1and 20.4 W m−2), in order to further understand their impact on the reaction kinetics. Special attention was given to the mass transfer phenomena and the influence of film thickness. The kinetics of phenol degradation were investigated with different irradiation levels and initial pollutant concentration. Photocatalytic degradation experiments were performed to evaluate the influence of mass transfer on the reaction and, in addition, the benzoic acid method was applied for the evaluation of mass transfer coefficient. For this study the reactor was modelled as a batch-recycle reactor. A system of equations that accounts for irradiation, mass transfer and reaction rate was developed to describe the photocatalytic process, to fit the experimental data and to obtain kinetic parameters. The rate of phenol photocatalytic oxidation was described by a Langmuir–Hinshelwood type law that included competitive adsorption and degradation of phenol and its by-products. The by-products were modelled through their additive effect on the solution total organic carbon.
Resumo:
Non-stoichiometric substituted cerium vanadates, MxCe1-xVO4 (M = Li, Ca and Fe), were synthesized by solid-state reactions. The crystal structure was analyzed by powder X-ray diffraction and it exhibits a tetragonal zircon Structure, crystallizing in the space group I4(1)/amd with a = 7.3733(4) and c = 6.4909(4) angstrom and Z = 4. Particle sizes were in the range of 600-800 nm, as observed by scanning electron microscopy. The thermal analysis of the compounds showed phase stability up to 1100 degrees C. The UV diffuse reflectance spectra indicated that the compounds have band gaps in the range of 2.6-2.9 eV. The photocatalytic activity of these Compounds was investigated for the first time for the degradation of different dyes, and organics, the oxidation of cyclohexane and the hydroxylation of benzene. The degradation of dyes was modeled using the Langmuir-Hinshelwood kinetics, while the oxidation of cyclohexane and hydroxylation of benzene were modeled using a free radical mechanism and a series reaction mechanism, respectively.
Resumo:
Three inorganic-organic hybrid framework cadmium thiosulfate phases have been investigated for adsorption and photodegradation of organic dye molecules. Different classes of organic dyes, viz., triaryl methane, azo, xanthene, anthraquinone, have been studied. The anionic dyes with sulfonate groups appear to readily adsorb on the cadmium thiosulfate compounds in an aqueous medium. The adsorption of the dye molecules, however, does not create any structural changes on the cadmium thiosulfate compounds, though weak electronic interactions have been observed. The adsorbed dyes have been desorbed partially in an alcoholic medium, suggesting possible applications in scavenging specific anionic dyes from the aqueous solutions. Langmuir adsorption/desorption isotherms have been used to model this behavior. UV-assisted (lambda(max) = 365 nm) photocatalytic decomposition studies on the cationic dyes indicate reasonable activity comparable with that of Degussa P-25 (TiO2) catalyst. Sunlight assisted photocatalyti studies have been carried out in detail employing hybrid framework compounds. The Langmuir-Hinshelwood kinetics model, employed to follow the degradation profile of the organic dyes, indicates that the photocatalytic degradation follows the order: triaryl methane > azo > xanthene.