954 resultados para Self-organized criticality
Resumo:
Microvoid arrays were self-organized when femtosecond laser beam was tightly focused at a fixed point inside CaF2 crystal sample. Except void array grown below the focal point which had been reported before, we found another void array grown vertical to the laser propagation direction. This result has potential application in the fabrication of integrated micro-optic elements and photonic crystals. The possible mechanism of the phenomenon was proposed and verified experimentally.
Resumo:
A review is presented on recent research development of self-organized Ge/Si quantum dots (QDs). Emphasis is put on the morphological evolution of the Ge quantum dots grown on Si (001) substrate, the structure analysis of multilayer Ge QDs, the optical and electronic properties of these nanostructures, and the approaches to fabricating ordered Ge quantum dots.
Resumo:
Horizontal self-organized superlattice structures consisting of alternating In-rich and Al-rich layers formed naturally during solid-source molecular beam epitaxy (MBE) growth of In0.52Al0.48As on exactly (001) InP substrates, with In and At fluxes unchanged. The growth temperatures were changed from 490 to 510 degrees C, the most commonly used growth temperature for In0.52Al0.48As alloy. No self-organized superlattices (SLs) were observed at the growth temperature 490 degrees C, and self-organized SLs were observed in InAlAs layers at growth temperatures ranging from 498 to 510 degrees C. The results show that the period of the SLs is very highly regular, with the value of similar to 6 nm, and the composition of In or Al varies approximately sinusoidally along the [001] growth direction. The theoretical simulation results confirm that the In composition modulation amplitude is less than 0.02 relative the In composition of the In0.52Al0.48As lattice matched with the InP substrate. The influence of InAs self-organized quantum wires on the spontaneously formed InxAl1-xAs/InyAl1-yAs SLs was also studied and the formation of self-organized InxAl1-xAs/InyAl1-yAs SLs was attributed to the strain-mediated surface segregation process during MBE growth of In0.52Al0.48As alloy. (C) 2005 Published by Elsevier Ltd.
Resumo:
A systematic investigation of the strain distribution of self-organized, lens-shaped quantum dot in the case of growth direction on (001) substrate was presented. The three-dimensional finite element analysis for an array of dots was used for the strain calculation. The dependence of the strain energy density distribution on the thickness of the capping layer was investigated in detail when the elastic characteristics of the matrix material were anisotropic. It is shown that the elastic anisotropic greatly influences the stress, strain, and strain energy density in the quantum dot structures. The anisotropic ratio of the matrix material and the combination with different thicknesses of the capping layer, may lead to different strain energy density minimum locations on the capping layer surface, which can result in various vertical ordering phenomena for the next layer of quantum dots, i.e. partial alignment, random alignment, and complete alignment.
Resumo:
Self-organized InAs quantum dots (QDs) have been fabricated by molecular beam epitaxy. The authors try to use a slow positron beam to detect defects in and around self-organized QDs, and point defects are observed in GaAs cap layer above QDs. For the self-organized InAs QDs without strain-reducing layer, it is free of defects. However, by introducing a strain-reducing layer, the density of point defects around larger sized InAs QDs increased. The above results suggest that low energy positron beam measurements may be a good approach to detect depth profiles of defects in QD materials. (c) 2007 American Institute of Physics.
Resumo:
Cr-doped InAs self-organized diluted magnetic quantum dots (QDs) are grown by low-temperature molecular-beam epitaxy, Magnetic measurements reveal that the Curie temperature of all the InAs:Cr QDs layers with Cr/In flux ratio changing from 0.026 to 0.18 is beyond 400 K. High-resolution cross sectional transmission electron microscopy images indicate that InAs:Cr QDs are of the zincblende structure. Possible origins responsible for the high Curie temperature are discussed.
Resumo:
On the basis of the finite element approach, we systematically investigated the strain field distribution of conical-shaped InAs/GaAs self-organized quantum dot using the two-dimensional axis-symmetric model. The normal strain, the hydrostatic strain and the biaxial strain components along the center axis path of the quantum dots are analyzed. The dependence of these strain components on volume, height-over-base ratio and cap layer (covered by cap layer or uncovered quantum dot) is investigated for the quantum grown on the (001) substrate. The dependence of the carriers' confining potentials on the three circumstances discussed above is also calculated in the framework of eight-band k (.) p theory. The numerical results are in good agreement with the experimental data of published literature.
Resumo:
We report a structure of (In, Ga)As/GaAs quantum dots which are vertically correlated and laterally aligned in a hexagonal way thus forming three-dimensionally ordered arrays. The growth pathway is based on a mechanism of self-assembly by strain-mediated multilayer vertical stacking on a planar GaAs(100) substrate, rather than molecular-beam epitaxy on a prepatterned substrate. The strain energy of lateral island-island interaction is minimum for the arrangement of hexagonal ordering. However, realization of hexagonal ordering not only depends on a complicated trade-off between lateral and vertical island-island interaction but is also related to a delicate and narrow growth kinetics window.
High uniformity of self-organized InAs quantum wires on InAlAs buffers grown on misoriented InP(001)
Resumo:
Highly uniform InAs quantum wires (QWRs) have been obtained on the In0.5Al0.5As buffer layer grown on the InP substrate 8 degrees off (001) towards (111) by molecular-beam epitaxy. The quasi-periodic composition modulation was spontaneously formed in the In0.5Al0.5As buffer layer on this misoriented InP (001). The width and period of the In-rich bands are about 10 and 40 nm, respectively. The periodic In-rich bands play a major role in the sequent InAs QWRs growth and the InAs QWRs are well positioned atop In-rich bands. The photoluminescence (PL) measurements showed a significant reduction in full width at half maximum and enhanced PL efficiency for InAs QWRs on misoriented InP(001) as compared to that on normal InP(001). (c) 2006 American Institute of Physics.
Resumo:
Self-organized InAs quantum wires (QWRs) were fabricated on the step edges of the GaAs (331)A surface by molecular beam epitaxy. The lateral size of InAs QWRs was saturated by the terrace width (i.e., 90 nm) while the size along the step lines increased with the increasing thicknesses of the InAs layers, up to 1100 nm. The height of InAs QWRs varied from 7.9 nm to 13 nm. The evolution of the morphology of InAs QWRs was attributed to the diffusion anisotropy of In adatoms.
Resumo:
Surface morphology and optical properties of 1.3 mum self-organized InGaAs/GaAs quantum dots structure grown by molecular beam epitaxy have been investigated by atomic force microscopy and photoluminescence measurements. It has been shown that the surface morphology evolution and emission wavelengths of InGaAs/GaAs QDs can be controlled effectively via cycled monolayer deposition methods due to the reduction of the surface strain. Our results provide important information for optimizing the epitaxial parameters for obtaining 1.3 mum long wavelength emission quantum dots structures. (C) 2002 Elsevier Science B.V. All rights reserved.
Electron ground state energy level determination of ZnSe self-organized quantum dots embedded in ZnS
Resumo:
Optical and electrical characterization of the ZnS self-organized quantum dots (QDs) embedded in ZnS by molecular beam epitaxy have been investigated using photoluminescence (PL), capacitance-voltage (C-V), and deep level transient Fourier spectroscopy (DLTFS) techniques. The temperature dependence of the free exciton emission was employed to clarify the mechanism of the PL thermal quenching processes in the ZnSe QDs. The PL experimental data are well explained by a two-step quenching process. The C-V and DLTFS techniques were used to obtain the quantitative information on the electron thermal emission from the ZnSe QDs. The correlation between the measured electron emission from the ZnSe QDs in the DLTFS and the observed electron accumulation in the C-V measurements was clearly demonstrated. The emission energy for the ground state of the ZnSe QDs was determined to be at about 120 meV below the conduction band edge of the ZnS barrier, which is in good agreement with the thermal activation energy, 130 meV, obtained by fitting the thermal quenching process of the free exciton PL peak. (C) 2003 American Institute of Physics.
Resumo:
Type-II SiGe/Si MQWs (Multi-Quantum Wells) and Self-Organized Ge/Si Islands were successfully grown by a homemade ultra-high vacuum/chemical vapor deposition (UHV/CVD) system. Growth characteristics and PL (photoluminescence) spectra at different temperature were measured. It demonstrated that some accumulation of carriers in the islands results in the increase of the integrated PL intensity of island-related at a certain temperature range.
Resumo:
Self-organized InAs quantum dots (QDs) have been fabricated by molecular beam epitaxy and characterized by photoluminescence (PL). For both single- and multi-layer QDs, PL intensity of the first excited state is larger than that of the ground state at 15 K. Conversely, at room temperature (RT), PL intensity of the first excited state is smaller than that of the ground state. This result is explained by the phonon bottleneck effect. To the ground state, the PL intensities of the multi-layer QDs are larger than that of the single-layer QDs at 15 K, while the intensities are smaller than that of the single-layer QDs at RT. This is due to the defects in the multi-layer QD samples acting as the nonradiative recombination centers. The inter-diffusion of Ga and In atoms in the growth process of multi-layer QDs results in the PL blueshift of the ground state and broadening of the full-width at half-maximum (FWHM), which can be avoided by decreasing the spacers' growth temperature. At the spacers' growth temperature of 520degreesC, we have prepared the 5-layer QDs which emit near 1.3 mum with a FWHM of 31.7 meV at RT, and 27.9 meV at 77 K. (C) 2002 Published by Elsevier Science B.V.