318 resultados para Schistosoma japonicum
Resumo:
It is unknown whether transforming growth factor beta1 (TGF-beta1) signaling uniformly participates in fibrogenic chronic liver diseases, irrespective of the underlying origin, or if other cytokines such as interleukin (IL)-13 share in fibrogenesis (e.g., due to regulatory effects on type I pro-collagen expression). TGF-beta1 signaling events were scored in 396 liver tissue samples from patients with diverse chronic liver diseases, including hepatitis B virus (HBV), hepatitis C virus (HCV), Schistosoma japonicum infection, and steatosis/steatohepatitis. Phospho-Smad2 staining correlated significantly with fibrotic stage in patients with HBV infection (n = 112, P < 0.001) and steatosis/steatohepatitis (n = 120, P < 0.01), but not in patients with HCV infection (n = 77, P > 0.05). In tissue with HBx protein expression, phospho-Smad2 was detectable, suggesting a functional link between viral protein expression and TGF-beta1 signaling. For IL-13, immunostaining correlated with fibrotic stage in patients with HCV infection and steatosis/steatohepatitis. IL-13 protein was more abundant in liver tissue lysates from three HCV patients compared with controls, as were IL-13 serum levels in 68 patients with chronic HCV infection compared with 20 healthy volunteers (72.87 +/- 26.38 versus 45.41 +/- 3.73, P < 0.001). Immunohistochemistry results suggest that IL-13-mediated liver fibrogenesis may take place in the absence of phospho-signal transducer and activator of transcription protein 6 signaling. In a subgroup of patients with advanced liver fibrosis (stage > or =3), neither TGF-beta nor IL-13 signaling was detectable. Conclusion: Depending on the cause of liver damage, a predominance of TGF-beta or IL-13 signaling is found. TGF-beta1 predominance is detected in HBV-related liver fibrogenesis and IL-13 predominance in chronic HCV infection. In some instances, the underlying fibrogenic mediator remains enigmatic.
Resumo:
delta-Aminolevulinate in plants, algae, cyanobacteria, and several other bacteria such as Escherichia coli and Bacillus subtilis is synthesized from glutamate by means of a tRNA(Glu) mediated pathway. The enzyme glutamyl tRNA(Glu) reductase catalyzes the second step in this pathway, the reduction of tRNA bound glutamate to give glutamate 1-semialdehyde. The hemA gene from barley encoding the glutamyl tRNA(Glu) reductase was expressed in E. coli cells joined at its amino terminal end to Schistosoma japonicum glutathione S-transferase (GST). GST-glutamyl tRNA(Glu) reductase fusion protein and the reductase released from it by thrombin digestion catalyzed the reduction of glutamyl tRNA(Glu) to glutamate 1-semialdehyde. The specific activity of the fusion protein was 120 pmol.micrograms-1.min-1. The fusion protein used tRNA(Glu) from barley chloroplasts preferentially to E. coli tRNA(Glu) and its activity was inhibited by hemin. It migrated as an 82-kDa polypeptide with SDS/PAGE and eluted with an apparent molecular mass of 450 kDa from Superose 12. After removal of the GST by thrombin, the protein migrated as an approximately equal to 60-kDa polypeptide with SDS/PAGE, whereas gel filtration on Superose 12 yielded an apparent molecule mass of 250 kDa. Isolated fusion protein contained heme, which could be reduced by NADPH and oxidized by air.
Resumo:
After malaria, schistosomiasis remains the most important tropical parasitic disease in large parts of the world. Schistosomiasis has recently re-emerged in Southern Europe. Intestinal schistosomiasis is caused by most Schistosoma (S.) spp. pathogenic to humans and leads to chronic inflammation and fibrosis of the colon as well as to liver fibrosis. Gallbladder abnormalities usually occur in patients with advanced hepatic portal fibrosis due to Schistosoma mansoni infection. Occasionally, gallbladder abnormalities have been seen also in children and occurring without associated overt liver abnormalities.The specific S. mansoni-induced gallbladder abnormalities detectable by ultrasound include typical hyperechogenic wall thickening with external gallbladder wall protuberances. The luminal wall surface is smooth. The condition is usually clinically silent although some cases of symptomatic cholecystitis have been described. The ultrasonographic Murphy response is negative. Gallbladder contractility is impaired but sludge and calculi occur rarely. Contrary to other trematodes such as liver flukes, S. mansoni does not obstruct the biliary tract. Advanced gallbladder fibrosis is unlikely to reverse after therapy.
Resumo:
We live in the era of post-genomics, a term that was, until recently, inappropriate when considering the blood flukes of humans because of the relative lack of knowledge of the schistosome genome. The position has, however, changed dramatically following the recent publication of two landmark papers on transcriptome analysis of Schistosoma japonicum and Schistosoma mansoni. In a quantum leap, both studies report on the identification of many novel genes and genes not previously known from schistosomes. The datasets provide new insights into the biology of the schistosomes and offer an opportunity for identification of potential antischistosome vaccine candidates and drug targets. Remarkable recent progress has also been achieved in genomic sequencing, and completed genomes for both species can be expected shortly.
Resumo:
In just over a decade, the use of molecular approaches for the recognition of parasites has become commonplace. For trematodes, the internal transcribed spacer region of ribosomal DNA (ITS rDNA) has become the default region of choice. Here, we review the findings of 63 studies that report ITS rDNA sequence data for about 155 digenean species from 19 families, and then review the levels of variation that have been reported and how the variation has been interpreted. Overall, complete ITS sequences (or ITS1 or ITS2 regions alone) usually distinguish trematode species clearly, including combinations for which morphology gives ambiguous results. Closely related species may have few base differences and in at least one convincing case the ITS2 sequences of two good species are identical. In some cases, the ITS1 region gives greater resolution than the ITS2 because of the presence of variable repeat units that are generally lacking in the ITS2. Intraspecific variation is usually low and frequently apparently absent. Information on geographical variation of digeneans is limited but at least some of the reported variation probably reflects the presence of multiple species. Despite the accepted dogma that concerted evolution makes the individual representative of the entire species, a significant number of studies have reported at least some intraspecific variation. The significance of such variation is difficult to assess a posteriori, but it seems likely that identification and sequencing errors account for some of it and failure to recognise separate species may also be significant. Some reported variation clearly requires further analysis. The use of a yardstick to determine when separate species should be recognised is flawed. Instead, we argue that consistent genetic differences that are associated with consistent morphological or biological traits should be considered the marker for separate species. We propose a generalised approach to the use of rDNA to distinguish trematode species.
Characterising granuloma regression and liver recovery in a murine model of schistosomiasis japonica
Resumo:
For hepatic schistosomiasis the egg-induced granulomatous response and the development of extensive fibrosis are the main pathologies. We used a Schistosoma japonicum-infected mouse model to characterise the multi-cellular pathways associated with the recovery from hepatic fibrosis following clearance of the infection with the anti-schistosomal drug, praziquantel. In the recovering liver splenomegaly, granuloma density and liver fibrosis were all reduced. Inflammatory cell infiltration into the liver was evident, and the numbers of neutrophils, eosinophils and macrophages were significantly decreased. Transcriptomic analysis revealed the up-regulation of fatty acid metabolism genes and the identification of Peroxisome proliferator activated receptor alpha as the upstream regulator of liver recovery. The aryl hydrocarbon receptor signalling pathway which regulates xenobiotic metabolism was also differentially up-regulated. These findings provide a better understanding of the mechanisms associated with the regression of hepatic schistosomiasis.
Resumo:
BACKGROUND: Schistosomiasis remains a major public health issue, with an estimated 230 million people infected worldwide. Novel tools for early diagnosis and surveillance of schistosomiasis are currently needed. Elevated levels of circulating microRNAs (miRNAs) are commonly associated with the initiation and progression of human disease pathology. Hence, serum miRNAs are emerging as promising biomarkers for the diagnosis of a variety of human diseases. This study investigated circulating host miRNAs commonly associated with liver diseases and schistosome parasite-derived miRNAs during the progression of hepatic schistosomiasis japonica in two murine models.
METHODOLOGY/PRINCIPAL FINDINGS: Two mouse strains (C57BL/6 and BALB/c) were infected with a low dosage of Schistosoma japonicum cercariae. The dynamic patterns of hepatopathology, the serum levels of liver injury-related enzymes and the serum circulating miRNAs (both host and parasite-derived) levels were then assessed in the progression of schistosomiasis japonica. For the first time, an inverse correlation between the severity of hepatocyte necrosis and the level of liver fibrosis was revealed during S. japonicum infection in BALB/c, but not in C57BL/6 mice. The inconsistent levels of the host circulating miRNAs, miR-122, miR-21 and miR-34a in serum were confirmed in the two murine models during infection, which limits their potential value as individual diagnostic biomarkers for schistosomiasis. However, their serum levels in combination may serve as a novel biomarker to mirror the hepatic immune responses induced in the mammalian host during schistosome infection and the degree of hepatopathology. Further, two circulating parasite-specific miRNAs, sja-miR-277 and sja-miR-3479-3p, were shown to have potential as diagnostic markers for schistosomiasis japonica.
CONCLUSIONS/SIGNIFICANCE: We provide the first evidence for the potential of utilizing circulating host miRNAs to indicate different immune responses and the severity of hepatopathology outcomes induced in two murine strains infected with S. japonicum. This study also establishes a basis for the early and cell-free diagnosis of schistosomiasis by targeting circulating schistosome parasite-derived miRNAs.
Resumo:
The schistosome blood flukes are some of the largest global causes of parasitic morbidity. Further study of the specific antibody response during schistosomiasis may yield the vaccines and diagnostics needed to combat this disease. Therefore, for the purposes of antigen discovery, sera and antibody-secreting cell (ASC) probes from semi-permissive rats and sera from susceptible mice were used to screen a schistosome protein microarray. Following Schistosoma japonicum infection, rats had reduced pathology, increased antibody responses and broader antigen recognition profiles compared with mice. With successive infections, rat global serological reactivity and the number of recognized antigens increased. The local antibody response in rat skin and lung, measured with ASC probes, increased after parasite migration and contributed antigen-specific antibodies to the multivalent serological response. In addition, the temporal variation of anti-parasite serum antibodies after infection and reinfection followed patterns that appear related to the antigen driving the response. Among the 29 antigens differentially recognized by the infected hosts were numerous known vaccine candidates, drug targets and several S. japonicum homologs of human schistosomiasis resistance markers-the tegument allergen-like proteins. From this set, we prioritized eight proteins that may prove to be novel schistosome vaccine and diagnostic antigens.
Resumo:
BACKGROUND: We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis.
METHODS AND FINDINGS: Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48 hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24 hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5.
CONCLUSIONS: This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs.
Resumo:
The global socioeconomic importance of helminth parasitic disease is underpinned by the considerable clinical impact on millions of people. While helminth polyparasitism is considered common in the Philippines, little has been done to survey its extent in endemic communities. High morphological similarity of eggs between related species complicates conventional microscopic diagnostic methods which are known to lack sensitivity, particularly in low intensity infections. Multiplex quantitative PCR diagnostic methods can provide rapid, simultaneous identification of multiple helminth species from a single stool sample. We describe a multiplex assay for the differentiation of Ascaris lumbricoides, Necator americanus, Ancylostoma, Taenia saginata and Taenia solium, building on our previously published findings for Schistosoma japonicum. Of 545 human faecal samples examined, 46.6% were positive for at least three different parasite species. High prevalences of S. japonicum (90.64%), A. lumbricoides (58.17%), T. saginata (42.57%) and A. duodenale (48.07%) were recorded. Neither T. solium nor N. americanus were found to be present. The utility of molecular diagnostic methods for monitoring helminth parasite prevalence provides new information on the extent of polyparasitism in the Philippines municipality of Palapag. These methods and findings have potential global implications for the monitoring of neglected tropical diseases and control measures.
Resumo:
Characterization of the genomic basis underlying schistosome biology is an important strategy for the development of future treatments and interventions. Genomic sequence is now available for the three major clinically relevant schistosome species, Schistosoma mansoni, S. japonicum and S. haematobium, and this information represents an invaluable resource for the future control of human schistosomiasis. The identification of a biologically important, but distinct from the host, schistosome gene product is the ultimate goal for many research groups. While the initial elucidation of the genome of an organism is critical for most biological research, continued improvement or curation of the genome construction should be an ongoing priority. In this review we will discuss prominent recent findings utilizing a systems approach to schistosome biology, as well as the increased use of interference RNA (RNAi). Both of these research strategies are aiming to place parasite genes into a more meaningful biological perspective.
Resumo:
Schistosomiasis affects more than 200 million people worldwide; another 600 million are at risk of infection. The schistosomulum stage is believed to be the target of protective immunity in the attenuated cercaria vaccine model. In an attempt to identify genes up-regulated in the schistosomulum stage in relation to cercaria, we explored the Schistosoma mansoni transcriptome by looking at the relative frequency of reads in EST libraries from both stages. The 400 genes potentially up-regulated in schistosomula were analyzed as to their Gene Ontology categorization, and we have focused on those encoding-predicted proteins with no similarity to proteins of other organisms, assuming they could be parasite-specific proteins important for survival in the host. Up-regulation in schistosomulum relative to cercaria was validated with real-time reverse transcription polymerase chain reaction (RT-PCR) for five out of nine selected genes (56%). We tested their protective potential in mice through immunization with DNA vaccines followed by a parasite challenge. Worm burden reductions of 16-17% were observed for one of them, indicating its protective potential. Our results demonstrate the value and caveats of using stage-associated frequency of ESTs as an indication of differential expression coupled to DNA vaccine screening in the identification of novel proteins to be further investigated as potential vaccine candidates.
Resumo:
Schistosoma mansoni is one of the agents of schistosomiasis, a chronic and debilitating disease. Here we, present a transcriptome-wide characterization of adult S. mansoni males by high-throughput RNA-sequencing. We obtained 1,620,432 high-quality ESTs from a directional strand-specific cDNA library, resulting in a 26% higher coverage of genome bases than that of the public ESTs available at NCBI. With a 15 x-deep coverage of transcribed genomic regions, our data were able to (i) confirm for the first time 990 predictions without previous evidence of transcription; (ii) correct gene predictions; (iii) discover 989 and 1196 RNA-seq contigs that map to intergenic and intronic genomic regions, respectively, where no gene had been predicted before. These contigs could represent new protein-coding genes or non-coding RNAs (ncRNAs). Interestingly, we identified 11 novel Micro-exon genes (MEGs). These data reveal new features of the S. mansoni transcriptional landscape and significantly advance our understanding of the parasite transcriptome. (c) 2011 Elsevier Inc. All rights reserved.
Resumo:
Objective We aimed to predict sub-national spatial variation in numbers of people infected with Schistosoma haematobium, and associated uncertainties, in Burkina Faso, Mali and Niger, prior to implementation of national control programmes. Methods We used national field survey datasets covering a contiguous area 2,750 × 850 km, from 26,790 school-aged children (5–14 years) in 418 schools. Bayesian geostatistical models were used to predict prevalence of high and low intensity infections and associated 95% credible intervals (CrI). Numbers infected were determined by multiplying predicted prevalence by numbers of school-aged children in 1 km2 pixels covering the study area. Findings Numbers of school-aged children with low-intensity infections were: 433,268 in Burkina Faso, 872,328 in Mali and 580,286 in Niger. Numbers with high-intensity infections were: 416,009 in Burkina Faso, 511,845 in Mali and 254,150 in Niger. 95% CrIs (indicative of uncertainty) were wide; e.g. the mean number of boys aged 10–14 years infected in Mali was 140,200 (95% CrI 6200, 512,100). Conclusion National aggregate estimates for numbers infected mask important local variation, e.g. most S. haematobium infections in Niger occur in the Niger River valley. Prevalence of high-intensity infections was strongly clustered in foci in western and central Mali, north-eastern and northwestern Burkina Faso and the Niger River valley in Niger. Populations in these foci are likely to carry the bulk of the urinary schistosomiasis burden and should receive priority for schistosomiasis control. Uncertainties in predicted prevalence and numbers infected should be acknowledged and taken into consideration by control programme planners.