941 resultados para SYMMETRIC ELEMENTS
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.
Resumo:
It is widely held that strong relationships exist between housing, economic status, and well being. Therefore, recent events emerging from the United States, culminating in widespread housing stock surpluses in that country and others, threaten to destabilise many aspects related to individuals and community. However, despite global impact, the position of housing demand and supply is not consistent. The Australian position provides a strong contrast whereby continued strong housing demand generally remains a critical issue affecting the socio-economic landscape. Underpinned by strong levels of immigration, and further buoyed by sustained historically low interest rates, increasing income levels, and increased government assistance for first home buyers, this strong housing demand ensures elements related to housing affordability continue to gain prominence. A significant, but less visible factor impacting housing affordability – particularly new housing development – relates to holding costs. These costs are in many ways “hidden” and cannot always be easily identified. Although it is only one contributor, the nature and extent of its impact requires elucidation. In its simplest form, it commences with a calculation of the interest or opportunity cost of land holding. However, there is significantly more complexity for major new developments - particularly greenfield development. Analysis suggests that even small shifts in primary factors impacting holding costs can appreciably affect housing affordability. Those factors of greatest significance not only include interest rates and the rate of inflation, but even less apparent factors such as the regulatory assessment period. These are not just theoretical concepts but real, measurable price drivers. Ultimately, the real impact is felt by the one market segment whom can typically least afford it – new home, first home buyers. They can be easily pushed out of affordability. This paper suggests the stability and sustainability of growing, new communities require this problem to be acknowledged and accurately identified if the well being of such communities is to be achieved.
Resumo:
Differential axial shortening, distortion and deformation in high rise buildings is a serious concern. They are caused by three time dependent modes of volume change; “shrinkage”, “creep” and “elastic shortening” that takes place in every concrete element during and after construction. Vertical concrete components in a high rise building are sized and designed based on their strength demand to carry gravity and lateral loads. Therefore, columns and walls are sized, shaped and reinforced differently with varying concrete grades and volume to surface area ratios. These structural components may be subjected to the detrimental effects of differential axial shortening that escalates with increasing the height of buildings. This can have an adverse impact on other structural and non-structural elements. Limited procedures are available to quantify axial shortening, and the results obtained from them differ because each procedure is based on various assumptions and limited to few parameters. All these prompt to a need to develop an accurate numerical procedure to quantify the axial shortening of concrete buildings taking into account the important time varying functions of (i) construction sequence (ii) Young’s Modulus and (iii) creep and shrinkage models associated with reinforced concrete. General assumptions are refined to minimize variability of creep and shrinkage parameters to improve accuracy of the results. Finite element techniques are used in the procedure that employs time history analysis along with compression only elements to simulate staged construction behaviour. This paper presents such a procedure and illustrates it through an example. Keywords: Differential Axial Shortening, Concrete Buildings, Creep and Shrinkage, Construction Sequence, Finite Element Method.
Resumo:
"By understanding how places have evolved, we are better able to guide development and change in the urban fabric and avoid the incongruity created by so much of the modern environment" (MacCormac, R (1996), An anatomy of London, Built Environment, Dec 1996 This paper proposes a theory on the relevance of mapping the evolutionary aspects of historical urban form in order to develop a measure of evaluating architectural elements within urban forms, through to deriving parameters for new buildings. By adopting Conzen's identification of the tripartite division of urban form; the consonance inurban form of a particular palce resides in the elements and measurable values tha makeup the fine grain aggregates of urban form. The paper will demonstrate throughthe case study of Brisbane in Australia, a method of conveying these essential components that constitute a cities continuity of form and active usage. By presenting the past as a repository of urban form characteristics, it is argued that concise architectural responses that stem from such knowledge should result in an engaged urban landscape. The essential proposition is that urban morphology is a missing constituent in the process of urban design, and that the approach of the geographical discipline to the study of urban morphology holds the key to providing the evidence of urban growth characteristics, and this methodology suggests possibilities for an architectural approach that can comprehensively determine qualitative aspects of urban buildings. The relevance of this research lies in a potential to breach the limitations of current urban analysis whilst continuing the evolving currency of urban morphology as an integral practice in the design of our cities.
Resumo:
Effective information and knowledge management (IKM) is critical to corporate success; yet, its actual establishment and management is not yet fully understood. We identify ten organizational elements that need to be addressed to ensure the effective implementation and maintenance of information and knowledge management within organizations. We define these elements and provide key characterizations. We then discuss a case study that describes the implementation of an information system (designed to support IKM) in a medical supplies organization. We apply the framework of organizational elements in our analysis to uncover the enablers and barriers in this systems implementation project. Our analysis suggests that taking the ten organizational elements into consideration when implementing information systems will assist practitioners in managing information and knowledge processes more effectively and efficiently. We discuss implications for future research.
Resumo:
Web design elements are significantly important for web designers to understand target users in terms of effective communication design and to develop a successful web site. However, web design elements generally known are broad and various that are hardly conceived and classified, so many practitioners and design researchers approach to web design elements based on graphic and visual design that mainly focus on print media design. This paper discusses about web design elements in terms of online user experience, as web media certainly differs from print media. It aims to propose a fundamentally new concept, called 'UEDUs: User Experience Design Units' which enables web designers to define web design elements and conceptualise user experience depending on the purpose of web site development.
Resumo:
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
Resumo:
The new cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their lightweight and cost-effectiveness. They have the beneficial characteristics of including torsionally rigid rectangular flanges combined with economical fabrication processes. Currently there is significant interest in using LSB sections as flexural members in floor joist systems. When used as floor joists, the LSB sections require holes in the web to provide access for inspection and various services. But there are no design methods that provide accurate predictions of the moment capacities of LSBs with web holes. In this study, the buckling and ultimate strength behaviour of LSB flexural members with web holes was investigated in detail by using a detailed parametric study based on finite element analyses with an aim to develop appropriate design rules and recommendations for the safe design of LSB floor joists. Moment capacity curves were obtained using finite element analyses including all the significant behavioural effects affecting their ultimate member capacity. The parametric study produced the required moment capacity curves of LSB section with a range of web hole combinations and spans. A suitable design method for predicting the ultimate moment capacity of LSB with web holes was finally developed. This paper presents the details of this investigation and the results
Resumo:
Organisational and leadership development is said to be one of the most challenging and important activities facing universities, particularly in the current environment of fast-paced change and accelerated age-related attrition. Succession leadership development being timely, the purpose of this study was to explore the nature of leadership development most suited to meeting the leadership and organisational development challenges for contemporary universities. A blend of literature-based and empirical research was undertaken. This resulted in seven papers submitted to internationally refereed journals; five papers published, one in press, and one under review. Six of these are sole authored papers and one is a co-authored paper. The papers identify some of the issues and challenges facing the tertiary sector. They shed light on factors influencing executive and organisational leadership development deriving from the literature review and from empirical research reporting the views of current university leaders. The papers and submission document herein include recommendations and suggested models informing executive and organisational leadership development in universities. The "Lantern" model - an Illuminated Model for Organisational Leadership Development - is a key original conceptual model framing the study.
Resumo:
It is widely held that strong relationships exist between housing, economic status, and well being. This is exemplified by widespread housing stock surpluses in many countries which threaten to destabilise numerous aspects related to individuals and community. However, the position of housing demand and supply is not consistent. The Australian position provides a distinct contrast whereby seemingly inexorable housing demand generally remains a critical issue affecting the socio-economic landscape. Underpinned by high levels of immigration, and further buoyed by sustained historically low interest rates, increasing income levels, and increased government assistance for first home buyers, this strong housing demand ensures elements related to housing affordability continue to gain prominence. A significant, but less visible factor impacting housing affordability – particularly new housing development – relates to holding costs. These costs are in many ways “hidden” and cannot always be easily identified. Although it is only one contributor, the nature and extent of its impact requires elucidation. In its simplest form, it commences with a calculation of the interest or opportunity cost of land holding. However, there is significantly more complexity for major new developments - particularly greenfield property development. Preliminary analysis conducted by the author suggests that even small shifts in primary factors impacting holding costs can appreciably affect housing affordability – and notably, to a greater extent than commonly held. Even so, their importance and perceived high level impact can be gauged from the unprecedented level of attention policy makers have given them over recent years. This may be evidenced by the embedding of specific strategies to address burgeoning holding costs (and particularly those cost savings associated with streamlining regulatory assessment) within statutory instruments such as the Queensland Housing Affordability Strategy, and the South East Queensland Regional Plan. However, several key issues require investigation. Firstly, the computation and methodology behind the calculation of holding costs varies widely. In fact, it is not only variable, but in some instances completely ignored. Secondly, some ambiguity exists in terms of the inclusion of various elements of holding costs, thereby affecting the assessment of their relative contribution. Perhaps this may in part be explained by their nature: such costs are not always immediately apparent. Some forms of holding costs are not as visible as the more tangible cost items associated with greenfield development such as regulatory fees, government taxes, acquisition costs, selling fees, commissions and others. Holding costs are also more difficult to evaluate since for the most part they must be ultimately assessed over time in an ever-changing environment, based on their strong relationship with opportunity cost which is in turn dependant, inter alia, upon prevailing inflation and / or interest rates. By extending research in the general area of housing affordability, this thesis seeks to provide a more detailed investigation of those elements related to holding costs, and in so doing determine the size of their impact specifically on the end user. This will involve the development of soundly based economic and econometric models which seek to clarify the componentry impacts of holding costs. Ultimately, there are significant policy implications in relation to the framework used in Australian jurisdictions that promote, retain, or otherwise maximise, the opportunities for affordable housing.
Resumo:
Axial shortening in vertical load bearing elements of reinforced concrete high-rise buildings is caused by the time dependent effects of shrinkage, creep and elastic shortening of concrete under loads. Such phenomenon has to be predicted at design stage and then updated during and after construction of the buildings in order to provide mitigation against the adverse effects of differential axial shortening among the elements. Existing measuring methods for updating previous predictions of axial shortening pose problems. With this in mind, a innovative procedure with a vibration based parameter called axial shortening index is proposed to update axial shortening of vertical elements based on variations in vibration characteristics of the buildings. This paper presents the development of the procedure and illustrates it through a numerical example of an unsymmetrical high-rise building with two outrigger and belt systems. Results indicate that the method has the capability to capture influence of different tributary areas, shear walls of outrigger and belt systems as well as the geometric complexity of the building.