1000 resultados para SOUTH SHETLAND
Resumo:
Antarctic fur seals (Arctocephalus gazella) in the South Shetland Islands are recovering from 19th-century exploitation more slowly than the main population at South Georgia. To document demographic changes associated with the recovery in the South Shetlands, we monitored fur seal abundance and reproduction in the vicinity of Elephant Island during austral summers from 1986/1987 through 1994/1995. Total births, mean and variance of birth dates, and average daily mortality rates were estimated from daily live pup counts at North Cove (NC) and North Annex (NA) colonies on Seal Island. Sightings of leopard seals (Hydrurga leptonyx) and incidents of leopard seal predation on fur seal pups were recorded opportunistically during daily fur seal research at both sites. High mortality of fur seal pups, attributed to predation by leopard seals frequently observed at NC, caused pup numbers to decline rapidly between January and March (i.e., prior to weaning) each year and probably caused a long-term decline in the size of that colony. The NA colony, where leopard seals were never observed, increased in size during the study. Pup mortality from causes other than leopard seal predation appeared to be similar at the two sites. The number of pups counted at four locations in the Elephant Island vicinity increased slowly, at an annual rate of 3.8%, compared to rates as high as 11% at other locations in the South Shetland Islands. Several lines of circumstantial evidence are consistent with the hypothesis that leopard seal predators limit the growth of the fur seal population in the Elephant Island area and perhaps in the broader population in the South Shetland Islands. The sustained growth of this fur seal population over many decades rules out certain predator–prey models, allowing inference about the interaction between leopard seals and fur seals even though it is less thoroughly studied than predator–prey systems of terrestrial vertebrates of the northern hemisphere. Top-down forces should be included in hypotheses for future research on the factors shaping the recovery of the fur seal population in the South Shetland Islands.
Resumo:
A thorough census of Admiralty Bay benthic biodiversity was completed through the synthesis of data, acquired from more than 30 years of observations. Most of the available records arise from successive Polish and Brazilian Antarctic expeditions organized since 1977 and 1982, respectively, but also include new data from joint collecting efforts during the International Polar Year (2007-2009). Geological and hydrological characteristics of Admiralty Bay and a comprehensive species checklist with detailed data on the distribution and nature of the benthic communities are provided. Approximately 1300 species of benthic organisms (excluding bacteria, fungi and parasites) were recorded from the bay`s entire depth range (0-500 m). Generalized classifications and the descriptions of soft-bottom and hard-bottom invertebrate communities are presented. A time-series analysis showed seasonal and interannual changes in the shallow benthic communities, likely to be related to ice formation and ice melt within the bay. As one of the best studied regions in the maritime Antarctic Admiralty Bay represents a legacy site, where continued, systematically integrated data sampling can evaluate the effects of climate change on marine life. Both high species richness and high assemblage diversity of the Admiralty Bay shelf benthic community have been documented against the background of habitat heterogeneity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The spatial and temporal variation of microphytobenthic biomass in the nearshore zone of Martel Inlet (King George Island, Antarctica) was estimated at several sites and depths (10-60 m), during three summer periods (1996/1997, 1997/1998, 2004/2005). The mean values were inversely related to the bathymetric gradient: higher ones at 10-20 m depth (136.2 +/- A 112.5 mg Chl a m(-2), 261.7 +/- A 455.9 mg Phaeo m(-2)), intermediate at 20-30 m (55.6 +/- A 39.5 mg Chl a m(-2), 108.8 +/- A 73.0 mg Phaeo m(-2)) and lower ones at 40-60 m (22.7 +/- A 23.7 mg Chl a m(-2), 58.3 +/- A 38.9 mg Phaeo m(-2)). There was also a reduction in the Chl a/Phaeo ratio with depth, from 3.2 +/- A 3.2 (10-20 m) to 0.7 +/- A 1.0 (40-60 m), showing a higher contribution of senescent phytoplankton and/or macroalgae debris at the deeper sites and the limited light flux reaching the bottom. Horizontal differences found in the biomass throughout the inlet could not be clearly related to hydrodynamics or proximity to glaciers, but with sediment characteristics. An inter-summer variation was observed: the first summer presented the highest microphytobenthic biomass apparently related to more hydrodynamic conditions, which causes the deposition of allochthonous material.
Resumo:
To assess the impact and fate of the summer phytoplankton bloom on Antarctic benthos, we evaluated temporal and spatial patterns in macrofaunal abundance and taxonomic composition along a transect crossing the West Antarctic Peninsula (WAP) continental shelf As part of the FOODBANCS project, we sampled three sites at 550-625 m depths during five cruises occurring in November 1999, February-March 2000, June 2000, October 2000 and March 2001. We used a combination of megacore and box-core samplers to take 81 samples, and collected over 30,000 macrofaunal individuals, one of the largest sampling efforts on the Antarctic shelf to date. Comparison of the two sampling methodologies (box core and megacore) indicates similar macrofaunal densities, but with significant differences in taxonomic composition, a reflection of the different spatial scales of sampling. Macrorfaunal abundances on the WAP shelf were relatively high compared to other Antarctic shelf settings. At two of the three sampling sites, macrofaunal abundance remained constant throughout the year, which is consistent with the presence of a sediment `food bank`. Differences were observed in taxonomic composition at the site closest to the coast (Station A), driven by higher abundances of subsurface-deposit feeders. A significant temporal response was observed in the ampharetid polychaetes at Station A, with an abundance peak in the late fall post-bloom period; this may have resulted from juvenile recruitment during the summer bloom. Familial composition of macrofaunal polychaetes on the WAP shelf is more closely related to deep-sea abyssal fauna than to other shelf regions, and we hypothesize that this is a result of both local ecological conditions (low temperatures) and a reflection of historical processes such as extinctions on the Antarctic shelf during previous glacial maxima followed by recolonization from the deep sea. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sediments from Admiralty Bay, Antarctica were collected during the austral summers of 2002/2003 and 2003/2004 in order to assess the distribution and concentration of sewage indicators originating from Comandante Ferraz Brazilian Antarctic Station. Fecal sterols (coprostanol + epicoprostanol) and linear alkylbenzenes (LABs) ranged from <0.01 to 0.95 mu g g(-1) and <1.0 to 23 ng g(-1) dry weight, respectively. In general, the higher concentrations were found only locally in the vicinity of Ferraz station at Martel Inlet. Baseline values for fecal sterols and coprostanone were calculated as 0.19 and 0.40 mu g g(-1), respectively. According to fecal sterols concentrations, sewage contribution to Martel Inlet has increased more than twice since 1997, as result of the increase in the number of researchers at the station especially during the last decade. A low correlation was found between total LABs and fecal steroids, which could be attributed to the contribution of the natural sources of steroids. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This investigation attempts to determine which environmental parameters of the bottom water and sediment control recent foraminifera fauna at Ezcurra Inlet (King George Island, Antarctica), using data collected during four summers (2002/03, 2003/04, 2004/05 and 2006/07). The study revealed that Ezcurra Inlet contain typical Antarctic foraminifera fauna with three distinct assemblages and few differences in environmental parameters. The species Bolivina pseudopunctata, Fursenkoina fusiformis, Portatrochammina antarctica, and Adercotryma glomerata were abundant in the samples. An elevated abundance, richness and diversity were common at the entrance of the inlet at depths greater than 55 m, where the inlet was characterized by low temperatures and muddy sand. In the inner part of the inlet (depth 30-55 m), richness and diversity were low and the most significant species were Cassidulinoides parkerianus, C. porrectus, and Psammosphaera fusca. Shallow waters showed low values of richness and abundance and high temperatures coupled with coarser sediment. In areas with high suspended matter concentrations and pH values associated with low salinity the most representative species were Hippocrepinella hirudinea and Hemisphaerammina bradyi.
Resumo:
This paper describes the first results of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in sediment cores of Admiralty Bay, Antarctica. These markers were used to assess the local input of anthropogenic materials (particulate and organic compounds) as a result of the influence of human occupation in a sub-Antarctic region and a possible long-range atmospheric transport of combustion products from sources in South America. The highest SCPs and PAHs concentrations were observed during the last 30 years, when three research stations were built in the area and industrial activities in South America increased. The concentrations of SCPs and PAHs were much lower than those of other regions in the northern hemisphere and other reported data for the southern hemisphere. The PAH isomer ratios showed that the major sources of PAHs are fossil fuels/petroleum, biomass combustion and sewage contribution generally close to the Brazilian scientific station. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Antarctic Brazilian Program (PROANTAR)
Resumo:
The study of Antarctic archaeal communities adds information on the biogeography of this group and helps understanding the dynamics of biogenic methane production in such extreme habitats. Molecular methods were combined to methane flux determinations in Martel Inlet, Admiralty Bay, to assess archaeal diversity, to obtain information about contribution of the area to atmospheric methane budget and to detect possible interferences of the Antarctic Brazilian Station Comandante Ferraz (EACF) wastewater discharge on local archaeal communities and methane emissions. Methane fluxes in Martel Inlet ranged from 3.2 to 117.9 mu mol CH(4) m(-2) d(-1), with an average of 51.3 +/- 8.5 mu mol CH(4) m(-2) d(-1) and a median of 57.6 mu mol CH(4) m(-2)d(-1). However, three negative fluxes averaging -11.3 mu mol CH(4) m(-2) d(-1) were detected in MacKellar Inlet, indicating that Admiralty Bay can be either a source or sink of atmospheric methane. Denaturing gradient gel electrophoresis (DGGE) showed that archaeal communities at EACF varied with depth and formed a group separated from the reference sites. Granulometric analysis indicated that differences observed may be mostly related to sediment type. However, an influence of wastewater input could not be discarded, since higher methane fluxes were found at CF site. suggesting stimulation of local methanogenesis. DGGE profile of the wastewater sample grouped separated from all other samples, suggesting that methanogenesis stimulation may be due to changes in environmental conditions rather than to the input of allochtonous species from the wastewater. 16S ribosomal DNA clone libraries analysis showed that all wastewater sequences were related to known methanogenic groups belonging to the hydrogenotrophic genera Methanobacterium and Methanobrevibacter and the aceticlastic genus Methanosaeta. EACF and Botany Point sediment clone libraries retrieved only groups of uncultivated Archaea, with predominance of Crenarchaeota representatives (MCG, MG1, MBG-B, MBG-C and MHVG groups). Euryarchaeota sequences found were mostly related to the LDS and RC-V groups, but MBG-D and DHVE-5 were also present. No representatives of cultivated methanogenic groups were found, but coverage estimates suggest that a higher number of clones would have to be analyzed in order to cover the greater archaeal diversity of Martel Inlet sediment. Nevertheless, the analysis of the libraries revealed groups not commonly found by other authors in Antarctic habitats and also indicated the presence of groups of uncultivated archaea previously associated to methane rich environments or to the methane cycle. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Admiralty Bay on the King George Island hosts the Brazilian, Polish and Peruvian research stations as well as the American and Ecuadorian field stations. Human activities in this region require the use of fossil fuels as an energy source, thereby placing the region at risk of hydrocarbon contamination. Hydrocarbon monitoring was conducted on water and sediment samples from the bay over 15 years. Fluorescence spectroscopy was used for the analysis of total polycyclic aromatic hydrocarbons (PAHs) in seawater samples and gas chromatography with flame ionization and/or mass spectrometric detection was used to analyse individual n-alkanes and PAHs in sediment samples. The results revealed that most sites contaminated by these Compounds are around the Brazilian and Polish research stations due to the intense human activities, mainly during the summer. Moreover, the sediments revealed the presence of hydrocarbons from different sources, suggesting a mixture of the direct input of oil or derivatives and derived from hydrocarbon combustion. A decrease in PAH concentrations occurred following improvement of the sewage treatment facilities at the Brazilian research station, indicating that the contribution from human waste may be significant.
Resumo:
Lichens are symbioses between fungi (mycobionts) and photoautotrophic green algae or cyanobacteria (photobionts). Many lichens occupy large distributional ranges covering several climatic zones. So far, little is known about the large-scale phylogeography of lichen photobionts and their role in shaping the distributional ranges of lichens. We studied south polar, temperate and north polar populations of the widely distributed fruticose lichen Cetraria aculeata. Based on the DNA sequences from three loci for each symbiont, we compared the genetic structure of mycobionts and photobionts. Phylogenetic reconstructions and Bayesian clustering methods divided the mycobiont and photobiont data sets into three groups. An AMOVA shows that the genetic variance of the photobiont is best explained by differentiation between temperate and polar regions and that of the mycobiont by an interaction of climatic and geographical factors. By partialling out the relative contribution of climate, geography and codispersal, we found that the most relevant factors shaping the genetic structure of the photobiont are climate and a history of codispersal. Mycobionts in the temperate region are consistently associated with a specific photobiont lineage. We therefore conclude that a photobiont switch in the past enabled C. aculeata to colonize temperate as well as polar habitats. Rare photobiont switches may increase the geographical range and ecological niche of lichen mycobionts by associating them with locally adapted photobionts in climatically different regions and, together with isolation by distance, may lead to genetic isolation between populations and thus drive the evolution of lichens.
Resumo:
The South Shetland Islands are located at the northern tip of the AP which is among the fastest warming regions on Earth. The islands are especially vulnerable to climate change due to their exposure to transient low-pressure systems and their maritime climate. Surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have compiled a unique meteorological data set for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind directions and wind velocities, as well as glacier ice temperatures in profile with a fully equipped automatic weather station on the Warszawa Icefield, from November 2010 and ongoing. In combination with two long-term synoptic datasets (40 and 10 years, respectively) and NCEP/NCAR reanalysis data, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed, a positive trend of 5K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a decrease in mean monthly winter sea level pressure. This concurs with a positive trend in the Southern Annular Mode (SAM) index, which gives a measure for the strength and extension of the Antarctic vortex. We connect this trend with a higher frequency of low-pressure systems hitting the South Shetland Islands during austral winter, bringing warm and moist air masses from lower latitudes. Due to its exposure to the impact of transient synoptic weather systems, the ice cap of KGI is especially vulnerable to changes during winter glacial mass accumulation period. A revision of seasonal changes in adiabatic air temperature lapse rates and their dependency on exposure and elevation has shown a clear decoupling of atmospheric surface layers between coastal areas and the higher-elevation ice cap, showing the higher sensitivity to free atmospheric flow and synoptic changes. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K/100 m), and a distinct spatial variability reflecting the impact of synoptic weather patterns. The observed advective conditions bringing warm, moist air with high temperatures and rain, lead to melt conditions on the ice cap, fixating surface air temperatures to the melting point. This paper assesses the impact of large-scale atmospheric circulation variability and climatic changes on the atmospheric surface layer and glacier mass accumulation of the upper ice cap during winter season for the Warszawa Icefield on KGI.
Resumo:
Three Spanish Antarctic research cruises (Ant-8611, Bentart-94 and Bentart-95) were carried out in the South Shetland Archipelago (Antarctic Peninsula) and Scotia Arc (South Orkney, South Sandwich and South Georgia archipelagos) on the continental shelf and upper slope (10-600 m depth). They have contributed to our knowledge about ascidian distribution and the zoogeographical relationships with the neighbouring areas and the other Subantarctic islands. The distribution of ascidian species suggests that the Scotia Arc is divided into two sectors, the South Orkney Archipelago, related to the Antarctic Province, and the South Georgia Archipelago (probably including the South Sandwich Archipelago), which is intermediate between the Antarctic Province and the Magellan region.
Resumo:
During a field campaign in the Austral spring 2012 the sedimentary architecture of a periglacial flood plain at the northeastern coast of Potter Peninsula (Area 5) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 14 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).