984 resultados para SODIUM-PUMP ACTIVITY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mineralocorticoids (DOCA) are known to increase Na('+) absorption and K('+) secretion in the rabbit cortical collecting duct (CCD). However, the mechanism of regulation of the apical and basolateral cell membranes and tight junction ion conductive pathways (G('a), G('b), and G('tj), respectively) by mineralocorticoids are only partially understood. Using electrophysiological techniques and microelectrodes it was demonstrated that the apical cell membrane contained a dominant Ba('2+) sensitive K('+) conductive pathway, G(,K)('a), and an amiloride sensitive Na('+) conductive pathway, G(,Na)('a). The basolateral membrane contained a dominant Cl('-) conductive pathway, G(,Cl)('b), and a significant Ba('2+) sensitive K('+) conductive pathway, G(,K)('b). Upon elevating the mineralocorticoid levels of rabbits with intact adrenal glands it was found that V('te) was significantly increased after 1 day with a further increase after 13-16 days. These results indicated both primary and secondary effects of mineralocorticoid elevation. After 1 day of DOCA treatment, G(,Na)('a), I(,Na)('a) and I(,K)('a) increased by more than 2-fold and were maintained at high levels after 13-16 days of DOCA treatment. Secondary (chronic) effects of mineralocorticoids were evident after 4 days or more of DOCA treatment. These included a significant increase in G(,K)('a) from 4.0 to 10.2 mS.cm('-2) and a hyperpolarization of V('b) by -20 mV after 4 days of treatment. After 13-16 days of DOCA treatment V('b) remained hyperpolarized at -98.1 mV and G('tj) decreased from 5.6 to 4.2 mS.cm('-2). The hyperpolarization of V('b) was due to an increase in electrogenic Na('+) pump activity as the pump current, I(,act)('b), increased significantly from 35.7 to 195.2 (mu)A.cm('-2). Whereas net passive K('+) current across the basolateral membrane, I(,K)('b), was near zero in the control group of animals, i.e., K('+) near equilibrium, I(,K)('b) was approximately -40 (mu)A.cm('-2) in chronic DOCA treated animals. These results demonstrate that the initial effect of mineralocorticoid elevation is to increase G(,Na)('a). The ensuing depolarization of the apical membrane increases the driving force for K('+) exit into the lumen. Between 1 and 4 days of elevation, G(,K)('a) more than doubles in magnitude and at the same time the electrogenic activity of the Na('+) pump increases. This results in a hyperpolarization of V('b) which increases the driving force for K('+) uptake from the bath to the cell through a basolateral membrane conductive pathway. After 13-16 days G('tj) decreases thereby serving to maintain high electrochemical gradients across the epithelium. Therefore, the long term effects of mineralocorticoid elevation on the CCD appear to be adaptive mechanisms that serve to maintain high levels of K('+) secretion and Na('+) absorption. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to evaluate factors regulating substrate metabolism in vivo positron emitting radionuclides were used for the assessment of skeletal muscle blood flow and glucose utilization. The potassium analog, Rb-82 was used to measure skeletal muscle blood flow and the glucose analog, 18-F-2-deoxy-2-fluoro-D-glucose (FDG) was used to examine the kinetics of skeletal muscle transport and phosphorylation.^ New Zealand white rabbits' blood flow ranged from 1.0-70 ml/min/100g with the lowest flows occurring under baseline conditions and the highest flows were measured immediately after exercise. Elevated plasma glucose had no effect on increasing blood flow, whereas high physiologic to pharmacologic levels of insulin doubled flow as measured by the radiolabeled microspheres, but a proportionate increase was not detected by Rb-82. The data suggest that skeletal muscle blood flow can be measured using the positron emitting K+ analog Rb-82 under low flow and high flow conditions but not when insulin levels in the plasma are elevated. This may be due to the fact that insulin induces an increase in the Na+/K+-ATPase activity of the cell indirectly through a direct increase in the Na+/H+pump activity. This suggests that the increased cation pump activity counteracts the normal decrease in extraction seen at higher flows resulting in an underestimation of flow as measured by rubidium-82.^ Glucose uptake as measured by FDG employed a three compartment mathematical model describing the rates of transport, countertransport and phosphorylation of hexose. The absolute values for the metabolic rate of FDG were found to be an order of magnitude higher than those reported by other investigators. Changes noted in the rate constant for transport (k1) were found to disagree with the a priori information on the effects of insulin on skeletal muscle hexose transport. Glucose metabolism was however, found to increase above control levels with administration of insulin and electrical stimulation. The data indicate that valid measurements of skeletal muscle glucose transport and phosphorylation using the positron emitting glucose analog FDG requires further model application and biochemical validation. (Abstract shortened with permission of author.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leishmania resistant to arsenicals and antimonials extrude arsenite. Previous results of arsenite uptake into plasma membrane-enriched vesicles suggested that the transported species is a thiol adduct of arsenite. In this paper, we demonstrate that promastigotes of arsenite-resistant Leishmania tarentolae have increased levels of intracellular thiols. High-pressure liquid chromatography of the total thiols showed that a single peak of material was elevated almost 40-fold. The major species in this peak was identified by matrix-assisted laser desorption/ionization mass spectrometry as N1,N8-bis-(glutathionyl)spermidine (trypanothione). The trypanothione adduct of arsenite was effectively transported by the As-thiol pump. No difference in pump activity was observed in wild type and mutants. A model for drug resistance is proposed in which Sb(V)/As(V)-containing compounds, including the antileishmanial drug Pentostam, are reduced intracellularly to Sb(III)/As(III), conjugated to trypanothione, and extruded by the As-thiol pump. The rate-limiting step in resistance is proposed to be formation of the metalloid-thiol pump substrates, so that increased synthesis of trypanothione produces resistance. Increased synthesis of the substrate rather than an increase in the number of pump molecules is a novel mechanism for drug resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quasielastic incoherent neutron scattering from hydrogen atoms, which are distributed nearly homogeneously in biological molecules, allows the investigation of diffusive motions occurring on the pico- to nanosecond time scale. A quasielastic incoherent neutron scattering study was performed on the integral membrane protein bacteriorhodopsin (BR), which is a light-driven proton pump in Halobacterium salinarium. BR is embedded in lipids, forming patches in the cell membrane of the organism, which are the so called purple membranes (PMs). Measurements were carried out at room temperature on oriented PM-stacks hydrated at two different levels (low hydration, h = 0.03 g of D2O per g of PM; high hydration, h = 0.28 g of D2O per g of PM) using time-of-flight spectrometers. From the measured spectra, different diffusive components were identified and analyzed with respect to the influence of hydration. This study supports the idea that a decrease in hydration results in an appreciable decrease in internal molecular flexibility of the protein structure. Because it is known from studies on the function of BR that the pump activity is reduced if the hydration level of the protein is insufficient, we conclude that the observed diffusive motions are essential for the function of this protein. A detailed analysis and classification of the different kinds of diffusive motions, predominantly occurring in PMs under physiological conditions, is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Acetylation and deacetylation at specific lysine (K) residues is mediated by histone acetylases (HATs) and deacetylases (HDACs), respectively. HATs and HDACs act on both histone and non-histone proteins, regulating various processes, including cardiac impulse propagation. Aim of the present work was to establish whether the function of the Ca2+ ATPase SERCA2, one of the major players in Ca2+ reuptake during excitation-contraction coupling in cardiac myocytes (CMs), could be modulated by direct K acetylation. Materials and methods: HL-1 atrial mouse cells (donated by Prof. Claycomb), zebrafish and Streptozotocin-induced diabetic rat CMs were treated with the pan-inhibitor of class I and II HDACs suberanilohydroxamic acid (SAHA) for 1.5 hour. Evaluation of SERCA2 acetylation was analyzed by co-immunoprecipitation. SERCA2 activity was measured on microsomes by pyruvate/NADH coupled reaction assay. SERCA2 mutants were obtained after cloning wild-type and mutated sequences into the pCDNA3 vector and transfected into HEK cells. Ca2+ transients in CMs (loading with Fluo3-AM, field stimulation, 0.5 Hz) and in transfected HEK cells (loading with FLUO-4, caffeine pulse) were recorded. Results: Co-Immunoprecipitation experiments performed on HL-1 cells demonstrated a significant increase in the acetylation of SERCA2 after SAHA-treatment (2.5 µM, n=3). This was associated with an increase in SERCA2 activity in microsomes obtained from HL-1 cells, after SAHA exposure (n=5). Accordingly, SAHA-treatment significantly shortened the Ca2+ reuptake time of adult zebrafish CMs. Further, SAHA 2.5 nM restored to control values the recovery time of Ca2+ transients decay in diabetic rat CMs. HDAC inhibition also improved contraction parameters, such as fraction of shortening, and increased pump activity in microsomes isolated from diabetic CMs (n=4). Notably, the K464, identified by bioinformatic tools as the most probable acetylation site on human SERCA2a, was mutated into Glutamine (Q) or Arginine (R) mimicking acetylation and deacetylation respectively. Measurements of Ca2+ transients in HEK cells revealed that the substitution of K464 with R significantly delayed the transient recovery time, thus indicating that deacetylation has a negative impact on SERCA2 function. Conclusions: Our results indicate that SERCA2 function can be improved by pro-acetylation interventions and that this mechanism of regulation is conserved among species. Therefore, the present work provides the basis to open the search for novel pharmacological tools able to specifically improve SERCA2 activity in diseases where its expression and/or function is impaired, such as diabetic cardiomyopathy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION Human muscle membrane properties can be assessed in vivo by recording muscle velocity recovery cycles (MVRCs). This study was undertaken to study the effect of muscle force training on MVRC parameters. METHODS MVRCs with 1 to 5 conditioning stimuli were recorded from brachioradialis muscle before and after 2 weeks of muscle force training in 12 healthy subjects. The effects of training on relative refractory period and early and late supernormality were quantified. RESULTS Force training induced a reduction of relative refractory period (P < 0.0001), while early supernormality was increased (P < 0.02) and peaked earlier (P < 0.01). Late supernormality and the increases in late supernormality due to 2 and 5 conditioning stimuli remained unchanged. CONCLUSIONS Muscle force training leads to hyperpolarization of the resting muscle membrane potential, probably caused by an increase in the number of sodium pump sites. Muscle Nerve 54: 144-146, 2016.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study sought to assess the impact of an intervention to reduce weight and control risk factors of noncommunicable chronic diseases in overweight or obese adults who are users of primary and secondary healthcare units of the public health system of Pelotas, Brazil. We hypothesized that individuals who received an educational intervention regarding how to lose weight and prevent other noncommunicable chronic disease risk factors through nutrition would lose weight and acquire active habits during leisure time more frequently than individuals under regular care. Two hundred forty-one participants from the Nutrition Outpatient Clinic of the Medical Teaching Hospital of the Federal University of Pelotas, Brazil, aged 20 years or older and classified as overweight or obese were randomly allocated to either the intervention group (IG; n = 120) or control group (CG; n = 121). The IG received individualized nutritional care for 6 months, and the CG received individualized usual care of the health services. Intention-to-treat analyses showed that at 6 months, mean fasting glycemia and daily consumption of sweet foods and sodium were reduced, and the time spent on physical leisure activity was increased in IG. Analysis of adherence to the protocol of the study revealed that individuals from IG had lost more in body weight, waist circumference, and fasting glucose compared to the CG. Leisure time physical activity increased in IG. Individuals adhered equally to the dietetic recommendations, irrespective of the nutrition approach that was used

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental results for the activity of water in aqueous solutions of 10 single, synthetic polyelectrolytes (polysodium acrylate, polysodium methacrylate, polyammonium acrylate, polysodium ethylene sulfonate, and polysodium styrene sulfonate) and sodium chloride at 298.2 K are presented. The experimental work was performed by applying the isopiestic method with sodium chloride as a reference substance. As expected, the activity of water decreases when the concentration of a polyelectrolyte and/or sodium chloride increases. At constant concentration of a polyelectrolyte and sodium chloride, the activity of water depends on the monomer unit and the molecular mass of the polyelectrolyte. The new data are to be used in future work to develop and test models for the Gibbs excess energy of aqueous solutions of polyelectrolytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A multi-resistência a antibióticos e medicamentos usados em quimioterapia é um dos grandes problemas com os quais as instituições de saúde se debatem hoje em dia. A acção provocada por bombas de efluxo é uma das suas causas. Estas bombas têm uma importância fundamental, uma vez que, ao expelirem todo o tipo de tóxicos para o exterior das células, também expelem medicamentos, fazendo com que estes não tenham o efeito desejado dentro delas. As bombas de efluxo são transportadores que se encontram nas membranas de todo o tipo de células. Existem dois grandes tipos de bombas de efluxo: as primárias e as secundárias. As primeiras conferem multi-resistência principalmente em células eucariotas, como as células do cancro em humanos, tendo como função a mediação da repulsa de substâncias tóxicas por intermédio da hidrólise de ATP. A primeira a ser descoberta e mais estudada destas bombas foi a ABCB1 que é o gene que codifica a glicoproteína-P (P de permeabilidade). Enquanto as secundárias, que são a maior fonte de multi-resistência em bactérias, promovem a extrusão de substâncias tóxicas através da força motriz de protões. Neste tipo de bombas são conhecidas quatro famílias principais, das quais uma das mais importantes é a superfamília RND, uma vez que inclui a bomba AcrAB-TolC, que é muito importante no metabolismo xenobiótico de bactérias Gramnegativas, nomeadamente a E.coli. Com o objectivo de reverter a multi-resistência, tanto em células eucariotas como procariotas, têm-se desenvolvido estratégias de combate que envolvem a descoberta de substâncias que inibam as bombas de efluxo. Assim sendo, ao longo dos tempos têm sido descobertas variadas substâncias que cumprem este objectivo. É o caso, por exemplo, dos derivados de fluoroquinolonas usados como inibidores de bombas de efluxo em bactérias ou do Tamoxifen, utilizado na terapia de pacientes com cancro da mama. Um dos grupos de substâncias estudados para o desenvolvimento de possíveis compostos que actuem como reversores de multi-resistência são os compostos derivados de hidantoínas. Estes, são conhecidos por possuírem uma grande variedade de propriedades bioquímicas e farmacológicas, sendo portanto usados para tratarem algumas doenças em humanos, como a epilepsia. Nestes, estão englobados compostos com actividade anti-convulsão que constitui a sua grande mais-valia e, dependente da substituição no anel que os constitui, uma grande variedade de outras propriedades farmacológicas como a anti-fungica, a anti-arritmica, a anti-viral, a anti-diabética ou por exemplo a antagonização de determinados receptores, como os da serotonina. Apesar de pouco usados em estudos experimentais para desenvolver substâncias anti-carcinogénicas, existem alguns estudos com este efeito. Objectivos: O presente projecto envolve o estudo de bombas de efluxo primárias e secundárias, em células eucariotas e procariotas, respectivamente. Em bactérias, foram usados quatro modelos experimentais: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, E. coli AG 100 e Salmonella Enteritidis NCTC 13349. Em células de cancro foram usadas, células T de linfoma de rato parentais e células T de linfoma de rato transfectadas com o gene humano MDR-1. O principal objectivo deste estudo foi a pesquisa de novos moduladores de bombas de efluxo presentes em bactérias e células do cancro, tentando assim contribuir para o desenvolvimento de novos agentes farmacológicos que consigam reverter a multi-resistência a medicamentos. Assim sendo foram testados trinta compostos derivados de hidantoínas: SZ-2, SZ-7, LL-9, BS-1, JH-63, MN-3, TD-7k, GG-5k, P3, P7, P10, P11, RW-15b, AD-26, RW-13, AD-29, KF-2, PDPH-3, Mor-1, KK-XV, Thioam-1, JHF-1, JHC-2, JHP-1, Fur-2, GL-1, GL-7, GL-14, GL-16, GL-18. Como forma de atingir estes objectivos, a actividade biológica dos trinta compostos derivados de hidantoínas foi avaliada nas quatro estirpes de bactérias da seguinte forma: foram determinadas as concentrações mínimas inibitórias dos trinta compostos como forma de definir as concentrações em que os compostos seriam utilizados. Os compostos foram posteriormente testadas com um método fluorométrico de acumulação de brometo de etídeo, que é um substrato comum em bombas de efluxo bacterianas, desenvolvido por Viveiros et al. A actividade biológica dos compostos derivados de hidantoínas nas células de cancro foi demonstrada por diferentes métodos. O efeito anti-proliferativo e citotóxico dos trinta compostos foi avaliado nas células T de linfoma de rato transfectadas com o gene humano MDR-1 pelo método de thiazolyl de tetrazólio (MTT). Como o brometo de etídeo também é expelido pelos transportadores ABC, estes compostos foram posteriormente testados com um método fluorométrico de acumulação de brometo de etídeo desenvolvido por Spengler et al nos dois diferentes tipos de células eucariotas. Resultados: A maioria dos compostos derivados de hidantoínas foi eficaz na modulação de bombas de efluxo, nas duas estirpes de bactérias Gram-negativas e nos dois diferentes tipos de células T de linfoma. Em contraste com estes resultados, nas duas estirpes de células Gram-positivas, a maioria dos compostos tiveram pouco efeito na inibição de bombas de efluxo ou até nenhum, em muitos dos casos. De uma maneira geral os melhores compostos nas diferentes estirpes de bactérias foram: Thioam-1, SZ-2, P3, Rw-15b, AD-26, AD-29, GL-18, GL-7, KF-2, SZ-7, MN-3, GL-16 e GL- 14. Foram portanto estes os compostos que provocaram maior acumulação de brometo de etídeo, inibindo assim com maior eficácia as bombas de efluxo. No presente estudo, a maioria dos compostos conseguiu inibir a resistência provocada pela bomba de efluxo ABCB1, tanto nas células parentais bem como nas células que sobre-expressam esta bomba, causando a acumulação de brometo de etídeo dentro das células. As células que sobreexpressam a bomba ABCB1 foram posteriormente testadas com citometria de fluxo que é a técnica padrão para pesquisa de inibidores de bombas de efluxo. Os compostos que foram mais efectivos na inibição da bomba ABCB1, causando assim maior acumulação de brometo de etídeo nas células que sobre-expressam esta bomba foram: PDPH-3, GL-7, KK-XV, AD-29, Thioam-1, SZ-7, KF-2, MN-3, RW-13, LL-9, P3, AD-26, JH-63 e RW- 15b. Este facto não corroborou totalmente os resultados da citometria de fluxo uma vez que os moduladores que provocaram maior inibição da bomba ABCB1 foram o MN-3, JH-63 e o BS-1, sendo que o último não foi seleccionado como um bom composto usando o método fluorométrico de acumulação de brometo de etídeo. Conclusão: Os compostos derivados de hidantoínas testados tiveram maior efeito nas estirpes de bactérias Gram-negativas do que nas Gram-positivas. Relativamente às células eucariotas, as estruturas mais activas apresentam substituintes aromáticos bem como alguns fragmentos aminicos terciários.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract: INTRODUCTION: Leishmaniasis is a zoonotic disease caused by protozoa of the genus Leishmania . Cutaneous leishmaniasis is the most common form, with millions of new cases worldwide each year. Treatments are ineffective due to the toxicity of existing drugs and the resistance acquired by certain strains of the parasite. METHODS: We evaluated the activity of sodium nitroprusside in macrophages infected with Leishmania (Leishmania) amazonensis . Phagocytic and microbicidal activity were evaluated by phagocytosis assay and promastigote recovery, respectively, while cytokine production and nitrite levels were determined by ELISA and by the Griess method. Levels of iNOS and 3-nitrotyrosine were measured by immunocytochemistry. RESULTS: Sodium nitroprusside exhibited in vitro antileishmanial activity at both concentrations tested, reducing the number of amastigotes and recovered promastigotes in macrophages infected with L. amazonensis . At 1.5µg/mL, sodium nitroprusside stimulated levels of TNF-α and nitric oxide, but not IFN-γ. The compound also increased levels of 3-nitrotyrosine, but not expression of iNOS, suggesting that the drug acts as an exogenous source of nitric oxide. CONCLUSIONS: Sodium nitroprusside enhances microbicidal activity in Leishmania -infected macrophages by boosting nitric oxide and 3-nitrotyrosine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is a vasoconstrictor peptide possibly involved in the regulation of renal sodium handling and renin release. This investigation was undertaken to assess in conscious normotensive rats the acute effects of a non-pressor dose of NPY on renal plasma flow, glomerular filtration rate, sodium excretion and plasma renin activity. Experiments were also performed during concomitant beta-adrenoceptor stimulation with isoproterenol. NPY per se had no effect on the studied parameters. Renal plasma flow was increased by isoproterenol and was significantly higher when the beta-adrenoceptor stimulant was infused alone (13.4 +/- 2.1 ml/min, p < 0.05, mean +/- SEM) that when administered together with NPY (7.2 +/- 2.0 ml/min). This was also true for glomerular filtration rate (3.3 +/- 0.3 vs. 1.8 +/- 0.3 ml/min, p < 0.01) and plasma renin activity (6.3 +/- 1.7 vs. 2.1 +/- 0.4 ng Ang I/ml/h, p < 0.05). Our data however do not allow to deduce whether the inhibitory effect of NPY on isoproterenol-induced renin release is mediated by changes in intrarenal hemodynamics or a direct effect on juxtaglomerular cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the effect of extracellular proteases on the amiloride-sensitive Na+ current (INa) in Xenopus oocytes expressing the three subunits alpha, beta, and gamma of the rat or Xenopus epithelial Na+ channel (ENaC). Low concentrations of trypsin (2 microg/ml) induced a large increase of INa within a few minutes, an effect that was fully prevented by soybean trypsin inhibitor, but not by amiloride. A similar effect was observed with chymotrypsin, but not with kallikrein. The trypsin-induced increase of INa was observed with Xenopus and rat ENaC, and was very large (approximately 20-fold) with the channel obtained by coexpression of the alpha subunit of Xenopus ENaC with the beta and gamma subunits of rat ENaC. The effect of trypsin was selective for ENaC, as shown by the absence of effect on the current due to expression of the K+ channel ROMK2. The effect of trypsin was not prevented by intracellular injection of EGTA nor by pretreatment with GTP-gammaS, suggesting that this effect was not mediated by G proteins. Measurement of the channel protein expression at the oocyte surface by antibody binding to a FLAG epitope showed that the effect of trypsin was not accompanied by an increase in the channel protein density, indicating that proteolysis modified the activity of the channel present at the oocyte surface rather than the cell surface expression. At the single channel level, in the cell-attached mode, more active channels were observed in the patch when trypsin was present in the pipette, while no change in channel activity could be detected when trypsin was added to the bath solution around the patch pipette. We conclude that extracellular proteases are able to increase the open probability of the epithelial sodium channel by an effect that does not occur through activation of a G protein-coupled receptor, but rather through proteolysis of a protein that is either a constitutive part of the channel itself or closely associated with it.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) in the apical membrane of polarized epithelial cells is the rate-limiting step for Na entry into the cell; in series with the basolateral Na pump, it allows the vectorial transepithelial transport of Na ions. ENaC is expressed in different epithelia like the distal nephron or colon, and the airways epithelium. In the lung ENaC controls the composition and the amount of pulmonary fluid, whereas in the distal nephron ENaC under the control of aldosterone and vasopressin, is essential to adapt the amount of Na+ reabsorbed with the daily sodium intake. Activating mutations of ENaC cause severe disturbances of Na+ homeostasis leading to hypertension in human and in mouse models. Functional expression of ENaC in different cell systems allowed the identification of structural domains of the protein that are essential for channel function and/or modulation of channel activity. Site-directed mutations in specific domains of the channel protein lead to channel hyperactivity or channel loss of function. Knowledge about ENaC structure-function relationships opens new opportunities for development of pharmacological tools for controlling ENaC activity, such as channel activators of potential benefit in the treatment of pulmonary edema, or highly potent ENaC blockers with natriuretic effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Central angiotensin II (AngII) stimulates water and salt solution intake. Pretreatment with low-dose mineralocorticoid (DOCA) enhances this AngII-induced intake of salt solutions (the synergy theory) in Wistar and Sprague Dawley rats but not in Fischer rats. This response is mediated via the AT-1 receptor. Electrophysiological experiments using iontophoretic application of AngII and the AT-1 receptor-specific non-peptide antagonist losartan showed excitation of neurons in the preoptic/medial septum region of urethane-anesthetized male Wistar rats. DOCA pretreatment further enhances this neuronal excitation in response to AngII and reduces the responses to losartan. This generated the hypothesis that DOCA-enhanced AngII-induced neuronal excitation is the neural support for the synergy theory. AT-2 receptors modulate these intake responses depending on sodium in the diet, and diuretic-induced dehydration during pregnancy produces a higher salt intake in the offspring. AngII-induced salt and water intakes were tested in offspring from Sprague Dawley mothers with only 1.8% NaCl to drink in which half were treated with furosemide. The important observations were a) the AT-1 antagonist alone suppressed intakes in offspring from mothers not treated with furosemide, b) both AT-1 and AT-2 antagonists suppressed intakes in offspring from furosemide-treated mothers, and c) combined administration of AT-1 and AT-2 antagonists greatly suppressed water intake in offspring from mothers not treated with furosemide. These results suggest that AT-1 and AT-2 receptors have variable properties (receptor number and/or second messengers). Furthermore, the activity and function of these central AngII receptors depend on the background mineralocorticoid levels. The exact mechanism of this influence, however, remains to be determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: This study investigated the inhibition of the antimicrobial activity of sodium hypochlorite (NaOCl) by bovine serum albumin (BSA). The killing of Enterococcus faecalis, Candida albicans, Staphylococcus epidermidis, and Escherichia coil by NaOCl in concentrations from 2% to 0.03% was measured in the presence of BSA in concentrations between 6.7% and 0.1%. Methods: NaOCl, BSA, and microorganism suspensions were mixed, and, after 30 seconds, 6 minutes, and 30 minutes, samples were taken and NaOCl was inactivated by 5% sodium thiosulphate. The microbes were incubated in tryptic soy broth broth for up to 7 days for the detection of growth. Results: All microorganisms were killed within 30 seconds by 0.03% NaOCl when BSA was not present. High concentrations of BSA significantly reduced the antimicrobial activity of NaOCl against the four species. Conclusions: The inhibition of sodium hypochlorite by BSA was directly dependent on their quantitative relationships. The result partly explains the poorer performance in vivo of NaOCl as compared to in vitro experiments. (J Endod 2010;36:268-271)