994 resultados para SLR (Sea-Level Rise)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a set of new volume scaling relationships specific to Svalbard glaciers, derived from a sample of 60 volume–area pairs. Glacier volumes are computed from ground-penetrating radar (GPR)-retrieved ice thickness measurements, which have been compiled from different sources for this study. The most precise scaling models, in terms of lowest cross-validation errors, are obtained using a multivariate approach where, in addition to glacier area, glacier length and elevation range are also used as predictors. Using this multivariate scaling approach, together with the Randolph Glacier Inventory V3.2 for Svalbard and Jan Mayen, we obtain a regional volume estimate of 6700 ± 835 km3, or 17 ± 2 mm of sea-level equivalent (SLE). This result lies in the mid- to low range of recently published estimates, which show values as varied as 13 and 24 mm SLE. We assess the sensitivity of the scaling exponents to glacier characteristics such as size, aspect ratio and average slope, and find that the volume of steep-slope and cirque-type glaciers is not very sensitive to changes in glacier area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Island County is located in the Puget Sound of Washington State and includes several islands, the largest of which is Whidbey Island. Central Whidbey Island was chosen as the project site, as residents use groundwater for their water supply and seawater intrusion near the coast is known to contaminate this resource. In 1989, Island County adopted a Saltwater Intrusion Policy and used chloride concentrations in existing wells in order to define and map “risk zones.” In 2005, this method of defining vulnerability was updated with the use of water level elevations in conjunction with chloride concentrations. The result of this work was a revised map of seawater intrusion vulnerability that is currently in use by Island County. This groundwater management strategy is defined as trigger-level management and is largely a reactive tool. In order to evaluate trends in the hydrogeologic processes at the site, including seawater intrusion under sea level rise scenarios, this report presents a workflow where groundwater flow and discharge to the sea are quantified using a revised conceptual site model. The revised conceptual site model used several simplifying assumptions that allow for first-order quantitative predictions of seawater intrusion using analytical methods. Data from water well reports included lithologic and well construction information, static water levels, and aquifer tests for specific capacity. Results from specific capacity tests define the relationship between discharge and drawdown and were input for a modified Theis equation to solve for transmissivity (Arihood, 2009). Components of the conceptual site model were created in ArcGIS and included interpolation of water level elevation, creation of groundwater basins, and the calculation of net recharge and groundwater discharge for each basin. The revised conceptual site model was then used to hypothesize regarding hydrogeologic processes based on observed trends in groundwater flow. Hypotheses used to explain a reduction in aquifer thickness and hydraulic gradient were: (1) A large increase in transmissivity occurring near the coast. (2) The reduced aquifer thickness and hydraulic gradient were the result of seawater intrusion. (3) Data used to create the conceptual site model were insufficient to resolve trends in groundwater flow. For Hypothesis 2, analytical solutions for groundwater flow under Dupuit assumptions were applied in order to evaluate seawater intrusion under projected sea level rise scenarios. Results indicated that a rise in sea level has little impact on the position of a saltwater wedge; however, a reduction in recharge has significant consequences. Future work should evaluate groundwater flow using an expanded monitoring well network and aquifer recharge should be promoted by reducing surface water runoff.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal ecosystems lie at the forefront of sea level rise. We posit that before the onset of actual inundation, sea level rise will influence the species composition of coastal hardwood hammocks and buttonwood (Conocarpus erectus L.) forests of the Everglades National Park based on tolerance to drought and salinity. Precipitation is the major water source in coastal hammocks and is stored in the soil vadose zone, but vadose water will diminish with the rising water table as a consequence of sea level rise, thereby subjecting plants to salt water stress. A model is used to demonstrate that the constraining effect of salinity on transpiration limits the distribution of freshwater-dependent communities. Field data collected in hardwood hammocks and coastal buttonwood forests over 11 years show that halophytes have replaced glycophytes. We establish that sea level rise threatens 21 rare coastal species in Everglades National Park and estimate the relative risk to each species using basic life history and population traits. We review salinity conditions in the estuarine region over 1999–2009 and associate wide variability in the extent of the annual seawater intrusion to variation in freshwater inflows and precipitation. We also examine species composition in coastal and inland hammocks in connection with distance from the coast, depth to water table, and groundwater salinity. Though this study focuses on coastal forests and rare species of South Florida, it has implications for coastal forests threatened by saltwater intrusion across the globe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr− 1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr− 1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m− 2 yr− 1 within the storm deposit compared to 151 and 168 g m− 2 yr− 1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The landscape structure of emergent wetlands in undeveloped portions of the southeastern coastal Everglades is comprised of two distinct components: scattered forest fragments, or tree islands, surrounded by a low matrix of marsh or shrub-dominated vegetation. Changes in the matrix, including the inland transgression of salt-tolerant mangroves and the recession of sawgrass marshes, have been attributed to the combination of sea level rise and reductions in fresh water supply. In this study we examined concurrent changes in the composition of the region’s tree islands over a period of almost three decades. No trend in species composition toward more salt-tolerant trees was observed anywhere, but species characteristic of freshwater swamps increased in forests in which fresh water supply was augmented. Tree islands in the coastal Everglades appear to be buffered from some of the short term effects of salt water intrusion, due to their ability to build soils above the surface of the surrounding wetlands, thus maintaining mesophytic conditions. However, the apparent resistance of tree islands to changes associated with sea level rise is likely to be a temporary stage, as continued salt water intrusion will eventually overwhelm the forests’ capacity to maintain fresh water in the rooting zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr− 1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr− 1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m− 2 yr− 1 within the storm deposit compared to 151 and 168 g m− 2 yr− 1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presentation of maps illustrating the percentage of land surface remaining at varying sea level rise from 1ft - 12ft in Miami-Dade County.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Draft Document. Presentation of maps produced from digital LIDAR elevation grids and contoured at 1 ft. levels illustration sea level rise for the Cutler Bay Township in Miami-Dade County.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of 7 maps illustrating the impact of sea level rise on Nautilus Island in Miami Beach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In New Caledonia barren salt-pans located landward to mangroves are used for the construction of shrimp ponds. The existing farms are jeopardized by the projected rise in the sea level, because the landward boundaries of ponds are situated at the elevation reached by spring tides. One low-cost strategy for mitigating the effects of sea level rise is to raise the level of the bottom of ponds. To test the effectiveness of such an adaptation, we built 4 experimental ponds in the low-lying zone of an existing 10 ha shrimp pond. The level of the bottom of 2 ponds was raised by adding about 15 cm of agricultural soil. Placing agricultural soil in the pond did not impair the functioning of the shrimp pond ecosystem. On the contrary, it resulted in unexpectedly better shrimp production in the 2 ponds with agricultural soils versus control ponds. We conclude that placing a layer of soil inside shrimp ponds is a promising strategy for maintaining the viability of shrimp ponds as the sea level rises.