999 resultados para SILICON(IV) PHTHALOCYANINE
Resumo:
Background: Major depression is one of the leading causes of disability worldwide, yet epidemiologic data are not available for many countries, particularly low- to middle-income countries. In this paper, we present data on the prevalence, impairment and demographic correlates of depression from 18 high and low-to middle-income countries in the World Mental Health Survey Initiative. Methods: Major depressive episodes (MDE) as defined by the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DMS-IV) were evaluated in face-to-face interviews using the World Health Organization Composite International Diagnostic Interview (CIDI). Data from 18 countries were analyzed in this report (n = 89,037). All countries surveyed representative, population-based samples of adults. Results: The average lifetime and 12-month prevalence estimates of DSM-IV MDE were 14.6% and 5.5% in the ten high-income and 11.1% and 5.9% in the eight low- to middle-income countries. The average age of onset ascertained retrospectively was 25.7 in the high-income and 24.0 in low- to middle-income countries. Functional impairment was associated with recency of MDE. The female: male ratio was about 2: 1. In high-income countries, younger age was associated with higher 12-month prevalence; by contrast, in several low-to middle-income countries, older age was associated with greater likelihood of MDE. The strongest demographic correlate in high-income countries was being separated from a partner, and in low- to middle-income countries, was being divorced or widowed. Conclusions: MDE is a significant public-health concern across all regions of the world and is strongly linked to social conditions. Future research is needed to investigate the combination of demographic risk factors that are most strongly associated with MDE in the specific countries included in the WMH.
Resumo:
Background: The MASS IV-DM Trial is a large project from a single institution, the Heart Institute (InCor), University of Sao Paulo Medical School, Brazil to study ventricular function and coronary arteries in patients with type 2 diabetes mellitus. Methods/Design: The study will enroll 600 patients with type 2 diabetes who have angiographically normal ventricular function and coronary arteries. The goal of the MASS IV-DM Trial is to achieve a long-term evaluation of the development of coronary atherosclerosis by using angiograms and coronary-artery calcium scan by electron-beam computed tomography at baseline and after 5 years of follow-up. In addition, the incidence of major cardiovascular events, the dysfunction of various organs involved in this disease, particularly microalbuminuria and renal function, will be analyzed through clinical evaluation. In addition, an effort will be made to investigate in depth the presence of major cardiovascular risk factors, especially the biochemical profile, metabolic syndrome inflammatory activity, oxidative stress, endothelial function, prothrombotic factors, and profibrinolytic and platelet activity. An evaluation will be made of the polymorphism as a determinant of disease and its possible role in the genesis of micro- and macrovascular damage. Discussion: The MASS IV-DM trial is designed to include diabetic patients with clinically suspected myocardial ischemia in whom conventional angiography shows angiographically normal coronary arteries. The result of extensive investigation including angiographic follow-up by several methods, vascular reactivity, pro-thrombotic mechanisms, genetic and biochemical studies may facilitate the understanding of so-called micro- and macrovascular disease of DM.
Resumo:
Background: Glioblastoma is the most lethal primary malignant brain tumor. Although considerable progress has been made in the treatment of this aggressive tumor, the clinical outcome for patients remains poor. Histone deacetylases (HDACs) are recognized as promising targets for cancer treatment. In the past several years, HDAC inhibitors (HDACis) have been used as radiosensitizers in glioblastoma treatment. However, no study has demonstrated the status of global HDAC expression in gliomas and its possible correlation to the use of HDACis. The purpose of this study was to evaluate and compare mRNA and protein levels of class I, II and IV of HDACs in low grade and high grade astrocytomas and normal brain tissue and to correlate the findings with the malignancy in astrocytomas. Methods: Forty-three microdissected patient tumor samples were evaluated. The histopathologic diagnoses were 20 low-grade gliomas (13 grade I and 7 grade II) and 23 high-grade gliomas (5 grade III and 18 glioblastomas). Eleven normal cerebral tissue samples were also analyzed (54 total samples analyzed). mRNA expression of class I, II, and IV HDACs was studied by quantitative real-time polymerase chain reaction and normalized to the housekeeping gene beta-glucuronidase. Protein levels were evaluated by western blotting. Results: We found that mRNA levels of class II and IV HDACs were downregulated in glioblastomas compared to low-grade astrocytomas and normal brain tissue (7 in 8 genes, p < 0.05). The protein levels of class II HDAC9 were also lower in high-grade astrocytomas than in low-grade astrocytomas and normal brain tissue. Additionally, we found that histone H3 (but not histone H4) was more acetylated in glioblastomas than normal brain tissue. Conclusion: Our study establishes a negative correlation between HDAC gene expression and the glioma grade suggesting that class II and IV HDACs might play an important role in glioma malignancy. Evaluation of histone acetylation levels showed that histone H3 is more acetylated in glioblastomas than normal brain tissue confirming the downregulation of HDAC mRNA in glioblastomas.
Resumo:
Objective: The aim of the present study was to determine the effect of GaAlAs low-level laser therapy (LLLT) on collagen IV remodeling of the tibialis anterior (TA) muscle in rats after cryolesion. Background: Considerable interest exists in skeletal muscle regeneration in situations such as repair after exercise-induced muscle injury, after muscle transplantation, in muscular dystrophy, exercise-induced muscle injury, and the recovery of strength after atrophy due to disuse. A number of studies have demonstrated the potential of LLLT in facilitating the muscle-healing process; however, no consensus is found in the literature regarding the best laser-irradiation parameters. Methods: Adult male Wistar rats (n = 45) were used and randomly divided into three groups: control (n = 5); nontreated cryolesioned group (n = 20), and LLLT-cryolesioned group (n = 20). The cryolesioned groups were analyzed at 1, 7, 14, and 21 days after the injury procedure. Laser irradiation was performed 3 times per week on the injured region by using the GaAlAs laser (660 nm; beam spot of 0.04 cm(2), output power of 20 mW, power density of 500 mW/cm(2), and energy density of 5 J/cm(2), for 10 sec). The muscles were removed, frozen, cryosectioned, and then stained with hematoxylin-eosin for the visualization of general morphology or used for immunohistochemical analysis of collagen IV. Results: It was demonstrated that LLLT promotes an increase in collagen IV immunolabeling in skeletal muscle in the first 7 days after acute trauma caused by cryoinjury, but does not modify the duration of the tissue-repair process. Even with LLLT, the injured muscle tissue needs similar to 21 days to achieve the same state of organization as that in the noninjured muscle. Conclusion: The collagen IV content is modulated in regenerating skeletal muscle under LLLT, which might be associated with better tissue outcome, although the histologic analysis did not detect tissue improvement in the LLLT group.
Resumo:
Based on high-resolution (R approximate to 42 000 to 48 000) and high signal-to-noise (S/N approximate to 50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarf and subgiant stars in the Galactic bulge. Including previous microlensing events, the sample of homogeneously analysed bulge dwarfs has now grown to 26. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the (7)Li line at 670.8 nm. The results from the 26 microlensed dwarf and subgiant stars show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H] approximate to -0.6 and one at [Fe/H] approximate to +0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade's window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can not settle on a conclusive solution for the observed differences. We further find that the metal-poor bulge dwarf stars are predominantly old with ages greater than 10 Gyr, while the metal-rich bulge dwarf stars show a wide range of ages. The metal-poor bulge sample is very similar to the Galactic thick disk in terms of average metallicity, elemental abundance trends, and stellar ages. Speculatively, the metal-rich bulge population might be the manifestation of the inner thin disk. If so, the two bulge populations could support the recent findings, based on kinematics, that there are no signatures of a classical bulge and that the Milky Way is a pure-disk galaxy. Also, recent claims of a flat IMF in the bulge based on the MDF of giant stars may have to be revised based on the MDF and abundance trends probed by our microlensed dwarf stars.
Resumo:
A fundamental interaction for electrons is their hyperfine interaction (HFI) with nuclear spins. HFI is well characterized in free atoms and molecules, and is crucial for purposes from chemical identification of atoms to trapped ion quantum computing. However, electron wave functions near atomic sites, therefore HFI, are often not accurately known in solids. Here we perform an all-electron calculation for conduction electrons in silicon and obtain reliable information on HFI. We verify the outstanding quantum spin coherence in Si, which is critical for fault-tolerant solid state quantum computing.
Resumo:
In this work, we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of acrylic acid (AAc) and vinylacetic acid (VAA) on the silicon surface. Our total energy calculations support the proposed experimental process, as it indicates that the chemisorption of the molecule is as follows: The gas phase VAA (AAc) adsorbs molecularly to the electrophilic surface Si atom and then dissociates into H(2)C = CH - COO and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. The activation energy for both processes correspond to thermal activations that are smaller than the usual growth temperature. In addition, the electronic structure, calculated vibrational modes, and theoretical scanning tunneling microscopy images are discussed, with a view to contribute to further experimental investigations.
Resumo:
Elastic properties of freestanding porous silicon layers fabricated by electrochemical anodization were studied by Raman scattering. Different anodization currents provided different degrees of porosity in the nanometer scale. Raman lines corresponding to the longitudinal optical phonons of crystalline and amorphous phases were observed. The amorphous volume fraction increased and the phonon frequencies for both phases decreased with increasing porosity. A strain distribution model is proposed whose fit to the experimental results indicates that the increasing nanoscale porosity causes strain relaxation in the amorphous domains and strain buildup in the crystalline ones. The present analysis has significant implications on the estimation of the crystalline Si domain's characteristic size from Raman scattering data. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3225832] All rights reserved.
Resumo:
The emission energy dependence of the photoluminescence (PL) decay rate at room temperature has been studied in Si nanoclusters (Si-ncl) embedded in Si oxide matrices obtained by thermal annealing of substoichiometric Si oxide layers Si(y)O(1-y), y=(0.36,0.39,0.42), at various annealing temperatures (T(a)) and gas atmospheres. Raman scattering measurements give evidence for the formation of amorphous Si-ncl at T(a)=900 degrees C and of crystalline Si-ncl for T(a)=1000 degrees C and 1100 degrees C. For T(a)=1100 degrees C, the energy dispersion of the PL decay rate does not depend on sample fabrication conditions and follows previously reported behavior. For lower T(a), the rate becomes dependent on fabrication conditions and less energy dispersive. The effects are attributed to exciton localization and decoherence leading to the suppression of quantum confinement and the enhancement of nonradiative recombination in disordered and amorphous Si-ncl. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3457900]
Resumo:
In the title complex, (C(24)H(20)P)(2)[Sn(C(2)H(3)NO(2)S(3))(3)], the Sn(IV) atom is coordinated by three N-(methylsulfonyl) dithiocarbimate bidentate ligands through the anionic S atoms in a slightly distorted octahedral coordination geometry. There is one half-molecule in the asymmetric unit; the complex is located on a crystallographic twofold rotation axis passing through the cation and bisecting one of the (non-symmetric) ligands, which appears thus disordered over two sites of equal occupancy. In the crystal structure, weak intermolecular C-H center dot center dot center dot O and C-H center dot center dot center dot S interactions contribute to the packing stabilization.
Resumo:
The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.
Resumo:
This work reports on the crystallization of amorphous silicon (a-Si) films doped with 1 at. % of nickel. The films, with thicknesses ranging from 10 to 3000 nm, were deposited using the cosputtering method onto crystalline quartz substrates. In order to investigate the crystallization mechanism in detail, a series of undoped a-Si films prepared under the same deposition conditions were also studied. After deposition, all a-Si films were submitted to isochronal thermal annealing treatments up to 1000 degrees C and analyzed by Raman scattering spectroscopy. Based on the present experimental results, it is possible to state that (a) when compared to the undoped a-Si films, those containing 1 at. % of Ni crystallize at temperatures similar to 100 degrees C lower, and that (b) the film thickness influences the temperature of crystallization that, in principle, tends to be lower in films thinner than 1000 nm. The possible reasons associated to these experimental observations are presented and discussed in view of some experimental and thermodynamic aspects involved in the formation of ordered Si-Si bonds and in the development of Ni-silicide phases. (c) 2008 American Institute of Physics.
Resumo:
Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 angstrom X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7(XAC2622)) and its interaction with VirB9. NMR solution studies show that residues 27-41 of the disordered flexible N-terminal region of VirB7(XAC2622) interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7(XAC2622) has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7(XAC2622) oligomerizes through interactions involving conserved residues in the N0 domain and residues 42-49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB(7XAC2622) oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.
Resumo:
The 30Si silicon isotope stable was used for assessing the accumulation and translocation of Si in rice and bean plants grown in labeled nutritive solution. The isotopic silicon composition in plant materials was determined by mass spectrometry (IRMS) using the method based on SiF4 formation. Considering the total-Si added into nutritive solutions, the quantity absorbed by plants was near to 51% for rice and 15% for bean plants. The accumulated amounts of Si per plant were about 150g in rice and 8.6g in bean. Approximately 70% of the total-Si accumulated was found in leaves. At presented experimental conditions, the results confirmed that once Si is accumulated in the old parts of rice and bean plant tissues it is not redistributed to new parts, even when Si is not supplied to plants from nutritive solution.
Resumo:
A method for isotopic determination of silicon by mass spectrometry in plants and soils labeled with Si-30 is reported. The development of this method is for use with studies involving the physiological process of absorption, transport, and redistribution of Si in the soil-plant system by use of the stable isotope Si-30 as a tracer. The procedure leads to SiF4 formation, and the isotopic determination of Si was based on the measurements of the (SiF3+)-Si-28, (SiF3+)-Si-29, and (SiF3+)-Si-30 signals. Relative standard deviation of Si-30 abundance measurements (n = 6) were lower than 0.1%, and the detection limit was 0.5 mg Si (dry mass).