985 resultados para SCALAR FIELD
Resumo:
Visualizing symmetric patterns in the data often helps the domain scientists make important observations and gain insights about the underlying experiment. Detecting symmetry in scalar fields is a nascent area of research and existing methods that detect symmetry are either not robust in the presence of noise or computationally costly. We propose a data structure called the augmented extremum graph and use it to design a novel symmetry detection method based on robust estimation of distances. The augmented extremum graph captures both topological and geometric information of the scalar field and enables robust and computationally efficient detection of symmetry. We apply the proposed method to detect symmetries in cryo-electron microscopy datasets and the experiments demonstrate that the algorithm is capable of detecting symmetry even in the presence of significant noise. We describe novel applications that use the detected symmetry to enhance visualization of scalar field data and facilitate their exploration.
Resumo:
The complexity in visualizing volumetric data often limits the scope of direct exploration of scalar fields. Isocontour extraction is a popular method for exploring scalar fields because of its simplicity in presenting features in the data. In this paper, we present a novel representation of contours with the aim of studying the similarity relationship between the contours. The representation maps contours to points in a high-dimensional transformation-invariant descriptor space. We leverage the power of this representation to design a clustering based algorithm for detecting symmetric regions in a scalar field. Symmetry detection is a challenging problem because it demands both segmentation of the data and identification of transformation invariant segments. While the former task can be addressed using topological analysis of scalar fields, the latter requires geometry based solutions. Our approach combines the two by utilizing the contour tree for segmenting the data and the descriptor space for determining transformation invariance. We discuss two applications, query driven exploration and asymmetry visualization, that demonstrate the effectiveness of the approach.
Resumo:
The objective of this thesis is to develop a framework to conduct velocity resolved - scalar modeled (VR-SM) simulations, which will enable accurate simulations at higher Reynolds and Schmidt (Sc) numbers than are currently feasible. The framework established will serve as a first step to enable future simulation studies for practical applications. To achieve this goal, in-depth analyses of the physical, numerical, and modeling aspects related to Sc>>1 are presented, specifically when modeling in the viscous-convective subrange. Transport characteristics are scrutinized by examining scalar-velocity Fourier mode interactions in Direct Numerical Simulation (DNS) datasets and suggest that scalar modes in the viscous-convective subrange do not directly affect large-scale transport for high Sc. Further observations confirm that discretization errors inherent in numerical schemes can be sufficiently large to wipe out any meaningful contribution from subfilter models. This provides strong incentive to develop more effective numerical schemes to support high Sc simulations. To lower numerical dissipation while maintaining physically and mathematically appropriate scalar bounds during the convection step, a novel method of enforcing bounds is formulated, specifically for use with cubic Hermite polynomials. Boundedness of the scalar being transported is effected by applying derivative limiting techniques, and physically plausible single sub-cell extrema are allowed to exist to help minimize numerical dissipation. The proposed bounding algorithm results in significant performance gain in DNS of turbulent mixing layers and of homogeneous isotropic turbulence. Next, the combined physical/mathematical behavior of the subfilter scalar-flux vector is analyzed in homogeneous isotropic turbulence, by examining vector orientation in the strain-rate eigenframe. The results indicate no discernible dependence on the modeled scalar field, and lead to the identification of the tensor-diffusivity model as a good representation of the subfilter flux. Velocity resolved - scalar modeled simulations of homogeneous isotropic turbulence are conducted to confirm the behavior theorized in these a priori analyses, and suggest that the tensor-diffusivity model is ideal for use in the viscous-convective subrange. Simulations of a turbulent mixing layer are also discussed, with the partial objective of analyzing Schmidt number dependence of a variety of scalar statistics. Large-scale statistics are confirmed to be relatively independent of the Schmidt number for Sc>>1, which is explained by the dominance of subfilter dissipation over resolved molecular dissipation in the simulations. Overall, the VR-SM framework presented is quite effective in predicting large-scale transport characteristics of high Schmidt number scalars, however, it is determined that prediction of subfilter quantities would entail additional modeling intended specifically for this purpose. The VR-SM simulations presented in this thesis provide us with the opportunity to overlap with experimental studies, while at the same time creating an assortment of baseline datasets for future validation of LES models, thereby satisfying the objectives outlined for this work.
Resumo:
A new inflationary scenario whose exponential potential V (Phi) has a quadratic dependence on the field Phi in addition to the standard linear term is confronted with the five-year observations of the Wilkinson-Microwave Anisotropy Probe and the Sloan Digital Sky Survey data. The number of e-folds (N), the ratio of tensor-to-scalar perturbations (r), the spectral scalar index of the primordial power spectrum (n(s)) and its running (dn(s)/d ln k) depend on the dimensionless parameter a multiplying the quadratic term in the potential. In the limit a. 0 all the results of the exponential potential are fully recovered. For values of alpha not equal 0, we find that the model predictions are in good agreement with the current observations of the Cosmic Microwave Background (CMB) anisotropies and Large-Scale Structure (LSS) in the Universe. Copyright (C) EPLA, 2008.
Resumo:
We found quasinormal modes, both in time and frequency domains, of the Ernst black holes, that is neutral black holes immersed in an external magnetic field. The Ernst solution reduces to the Schwarzschild solution, when the magnetic field vanishes. It is found that the quasinormal spectrum for massless scalar field in the vicinity of the magnetized black holes acquires an effective ""mass"" mu = 2B vertical bar m vertical bar, where m is the azimuthal number and B is parameter describing the magnetic field. We shall show that in the presence of a magnetic field quasinormal modes are longer lived and have larger oscillation frequencies. The perturbations of higher-dimensional magnetized black holes by Ortaggio and of magnetized dilaton black holes by Radu are considered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we analyze the action of the gravitational field on the dynamical Casimir effect. We consider a massless scalar field confined in a cuboid cavity placed in a gravitational field described by a static and diagonal metric. With one of the plane mirrors of the cavity allowed to move, we compute the average number of particles created inside the cavity by means of the Bogoliubov coefficients computed through perturbative expansions. We apply our result to the case of an oscillatory motion of the mirror, assuming a weak gravitational field described by the Schwarzschild metric. The regime of parametric amplification is analyzed in detail, demonstrating that our computed result for the mean number of particles created agrees with specific associated cases in the literature. Our results, obtained in the framework of the perturbation theory, are restricted, under resonant conditions, to a short-time limit.
Resumo:
Massless scalar and vector fields are coupled to the Lyra geometry by means of the Duffin-Kemmer-Petiau (DKP) theory. Using the Schwinger variational principle, the equations of motion, conservation laws and gauge symmetry are implemented. We find that the scalar field couples to the anholonomic part of the torsion tensor, and the gauge symmetry of the electromagnetic field does not break by the coupling with torsion.
Langevin simulation of scalar fields: Additive and multiplicative noises and lattice renormalization
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effects of nonlinear scalar field couplings on elastic proton-nucleus scattering observables are investigated using a relativistic impulse approximation. Nonlinear couplings affect in a nontrivial way the effective nucleon mass and the nuclear scalar and vector densities. Modifications on the densities might have observable consequences on scattering observables. Our investigation indicates that the description of the observables for the reactions p-O-16 and p-Ca-40 at 200 MeV are not greatly modified with the use of nonlinear models in comparison with the description using linear models.
Resumo:
Starting from linear equations for the complex scalar field, the two- and three-point Green's functions are obtained in the infrared approximation. We show that the infrared singularity factorizes in the vertex function as in spinor QED, reproducing in a simple and straightforward way the result of lengthy perturbative calculations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)