880 resultados para Rotation-invariant feature
Resumo:
This paper describes the participation of DAEDALUS at ImageCLEF 2011 Plant Identification task. The task is evaluated as a supervised classification problem over 71 tree species from the French Mediterranean area used as class labels, based on visual content from scan, scan-like and natural photo images. Our approach to this task is to build a classifier based on the detection of keypoints from the images extracted using Lowe’s Scale Invariant Feature Transform (SIFT) algorithm. Although our overall classification score is very low as compared to other participant groups, the main conclusion that can be drawn is that SIFT keypoints seem to work significantly better for photos than for the other image types, so our approach may be a feasible strategy for the classification of this kind of visual content.
Resumo:
In this work we propose an image acquisition and processing methodology (framework) developed for performance in-field grapes and leaves detection and quantification, based on a six step methodology: 1) image segmentation through Fuzzy C-Means with Gustafson Kessel (FCM-GK) clustering; 2) obtaining of FCM-GK outputs (centroids) for acting as seeding for K-Means clustering; 3) Identification of the clusters generated by K-Means using a Support Vector Machine (SVM) classifier. 4) Performance of morphological operations over the grapes and leaves clusters in order to fill holes and to eliminate small pixels clusters; 5)Creation of a mosaic image by Scale-Invariant Feature Transform (SIFT) in order to avoid overlapping between images; 6) Calculation of the areas of leaves and grapes and finding of the centroids in the grape bunches. Image data are collected using a colour camera fixed to a mobile platform. This platform was developed to give a stabilized surface to guarantee that the images were acquired parallel to de vineyard rows. In this way, the platform avoids the distortion of the images that lead to poor estimation of the areas. Our preliminary results are promissory, although they still have shown that it is necessary to implement a camera stabilization system to avoid undesired camera movements, and also a parallel processing procedure in order to speed up the mosaicking process.
Resumo:
Cerebral deposition of the amyloid β protein (Aβ) is an early and invariant feature of Alzheimer disease (AD). Whereas the 40-amino acid form of Aβ (Aβ40) accounts for ≈90% of all Aβ normally released from cells, it appears to contribute only to later phases of the pathology. In contrast, the longer more amyloidogenic 42-residue form (Aβ42), accounting for only ≈10% of secreted Aβ, is deposited in the earliest phase of AD and remains the major constituent of most amyloid plaques throughout the disease. Moreover, its levels have been shown to be increased in all known forms of early-onset familial AD. Thus, inhibition of Aβ42 production is a prime therapeutic goal. The same protease, γ-secretase, is assumed to generate the C termini of both Aβ40 and Aβ42. Herein, we analyze the effect of the compound MDL 28170, previously suggested to inhibit γ-secretase, on β-amyloid precursor protein processing. By immunoprecipitating conditioned medium of different cell lines with various Aβ40- and Aβ42-specific antibodies, we demonstrate a much stronger inhibition of the γ-secretase cleavage at residue 40 than of that at residue 42. These data suggest that different proteases generate the Aβ40 and Aβ42 C termini. Further, they raise the possibility of identifying compounds that do not interfere with general β-amyloid precursor protein metabolism, including Aβ40 production, but specifically block the generation of the pathogenic Aβ42 peptide.
Resumo:
Falls are one of the greatest threats to elderly health in their daily living routines and activities. Therefore, it is very important to detect falls of an elderly in a timely and accurate manner, so that immediate response and proper care can be provided, by sending fall alarms to caregivers. Radar is an effective non-intrusive sensing modality which is well suited for this purpose, which can detect human motions in all types of environments, penetrate walls and fabrics, preserve privacy, and is insensitive to lighting conditions. Micro-Doppler features are utilized in radar signal corresponding to human body motions and gait to detect falls using a narrowband pulse-Doppler radar. Human motions cause time-varying Doppler signatures, which are analyzed using time-frequency representations and matching pursuit decomposition (MPD) for feature extraction and fall detection. The extracted features include MPD features and the principal components of the time-frequency signal representations. To analyze the sequential characteristics of typical falls, the extracted features are used for training and testing hidden Markov models (HMM) in different falling scenarios. Experimental results demonstrate that the proposed algorithm and method achieve fast and accurate fall detections. The risk of falls increases sharply when the elderly or patients try to exit beds. Thus, if a bed exit can be detected at an early stage of this motion, the related injuries can be prevented with a high probability. To detect bed exit for fall prevention, the trajectory of head movements is used for recognize such human motion. A head detector is trained using the histogram of oriented gradient (HOG) features of the head and shoulder areas from recorded bed exit images. A data association algorithm is applied on the head detection results to eliminate head detection false alarms. Then the three dimensional (3D) head trajectories are constructed by matching scale-invariant feature transform (SIFT) keypoints in the detected head areas from both the left and right stereo images. The extracted 3D head trajectories are used for training and testing an HMM based classifier for recognizing bed exit activities. The results of the classifier are presented and discussed in the thesis, which demonstrates the effectiveness of the proposed stereo vision based bed exit detection approach.
Resumo:
Individual analysis of functional Magnetic Resonance Imaging (fMRI) scans requires user-adjustment of the statistical threshold in order to maximize true functional activity and eliminate false positives. In this study, we propose a novel technique that uses radiomic texture analysis (TA) features associated with heterogeneity to predict areas of true functional activity. Scans of 15 right-handed healthy volunteers were analyzed using SPM8. The resulting functional maps were thresholded to optimize visualization of language areas, resulting in 116 regions of interests (ROIs). A board-certified neuroradiologist classified different ROIs into Expected (E) and Non-Expected (NE) based on their anatomical locations. TA was performed using the mean Echo-Planner Imaging (EPI) volume, and 20 rotation-invariant texture features were obtained for each ROI. Using forward stepwise logistic regression, we built a predictive model that discriminated between E and NE areas of functional activity, with a cross-validation AUC and success rate of 79.84% and 80.19% respectively (specificity/sensitivity of 78.34%/82.61%). This study found that radiomic TA of fMRI scans may allow for determination of areas of true functional activity, and thus eliminate clinician bias.
Resumo:
This paper addresses the problem of colorectal tumour segmentation in complex real world imagery. For efficient segmentation, a multi-scale strategy is developed for extracting the potentially cancerous region of interest (ROI) based on colour histograms while searching for the best texture resolution. To achieve better segmentation accuracy, we apply a novel bag-of-visual-words method based on rotation invariant raw statistical features and random projection based l2-norm sparse representation to classify tumour areas in histopathology images. Experimental results on 20 real world digital slides demonstrate that the proposed algorithm results in better recognition accuracy than several state of the art segmentation techniques.
Resumo:
AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008
Resumo:
AIRES, Kelson R. T.; ARAÚJO, Hélder J.; MEDEIROS, Adelardo A. D. Plane Detection Using Affine Homography. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG: Anais... do CBA 2008.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This work presents a tool to support authentication studies of paintings attributed to the modernist Portuguese artist Amadeo de Souza-Cardoso (1887-1918). The strategy adopted was to quantify and combine the information extracted from the analysis of the brushstroke with information on the pigments present in the paintings. The brushstroke analysis was performed combining Gabor filter and Scale Invariant Feature Transform. Hyperspectral imaging and elemental analysis were used to compare the materials in the painting with those present in a database of oil paint tubes used by the artist. The outputs of the tool are a quantitative indicator for authenticity, and a mapping image that indicates the areas where materials not coherent with Amadeo's palette were detected, if any. This output is a simple and effective way of assessing the results of the system. The method was tested in twelve paintings obtaining promising results.
Resumo:
AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008
Resumo:
AIRES, Kelson R. T.; ARAÚJO, Hélder J.; MEDEIROS, Adelardo A. D. Plane Detection Using Affine Homography. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG: Anais... do CBA 2008.
Resumo:
Esta tesis se centra en la identificación de personas a través de la forma de caminar. El problema del reconocimiento del paso ha sido tratado mediante diferentes enfoques, en los dominios 2D y 3D, y usando una o varias vistas. Sin embargo, la dependencia con respecto al punto de vista, y por tanto de la trayectoria del sujeto al caminar sigue siendo aún un problema abierto. Se propone hacer frente al problema de la dependencia con respecto a la trayectoria por medio de reconstrucciones 3D de sujetos caminando. El uso de reconstrucciones varias ventajas que cabe destacar. En primer lugar, permite explotar una mayor cantidad de información en contraste con los métodos que extraen los descriptores de la marcha a partir de imágenes, en el dominio 2D. En segundo lugar, las reconstrucciones 3D pueden ser alineadas a lo largo de la marcha como si el sujeto hubiera caminado en una cinta andadora, proporcionando así una forma de analizar el paso independientemente de la trayectoria seguida. Este trabajo propone tres enfoques para resolver el problema de la dependencia a la vista: 1. Mediante la utilización de reconstrucciones volumétricas alineadas. 2. Mediante el uso de reconstrucciones volumétricas no alineadas. 3. Sin usar reconstrucciones. Se proponen además tres tipos de descriptores. El primero se centra en describir el paso mediante análisis morfológico de los volúmenes 3D alineados. El segundo hace uso del concepto de entropa de la información para describir la dinámica del paso humano. El tercero persigue capturar la dinámica de una forma invariante a rotación, lo cual lo hace especialmente interesante para ser aplicado tanto en trayectorias curvas como rectas, incluyendo cambios de dirección. Estos enfoques han sido probados sobre dos bases de datos públicas. Ambas están especialmente diseñadas para tratar el problema de la dependencia con respecto al punto de vista, y por tanto de la dependencia con respecto a la trayectoria. Los resultados experimentales muestran que para el enfoque basado en reconstrucciones volumétricas alineadas, el descriptor del paso basado en entropa consigue los mejores resultados, en comparación con métodos estrechamente relacionados del Estado del Arte actual. No obstante, el descriptor invariante a rotación consigue una tasa de reconocimiento que supera a los métodos actuales sin requerir la etapa previa de alineamiento de las reconstrucciones 3D.
Resumo:
Perceiving the world visually is a basic act for humans, but for computers it is still an unsolved problem. The variability present innatural environments is an obstacle for effective computer vision. The goal of invariant object recognition is to recognise objects in a digital image despite variations in, for example, pose, lighting or occlusion. In this study, invariant object recognition is considered from the viewpoint of feature extraction. Thedifferences between local and global features are studied with emphasis on Hough transform and Gabor filtering based feature extraction. The methods are examined with respect to four capabilities: generality, invariance, stability, and efficiency. Invariant features are presented using both Hough transform and Gabor filtering. A modified Hough transform technique is also presented where the distortion tolerance is increased by incorporating local information. In addition, methods for decreasing the computational costs of the Hough transform employing parallel processing and local information are introduced.
Resumo:
Craniosynostosis consists of a premature fusion of the sutures in an infant skull that restricts skull and brain growth. During the last decades, there has been a rapid increase of fundamentally diverse surgical treatment methods. At present, the surgical outcome has been assessed using global variables such as cephalic index, head circumference, and intracranial volume. However, these variables have failed in describing the local deformations and morphological changes that may have a role in the neurologic disorders observed in the patients. This report describes a rigid image registration-based method to evaluate outcomes of craniosynostosis surgical treatments, local quantification of head growth, and indirect intracranial volume change measurements. The developed semiautomatic analysis method was applied to computed tomography data sets of a 5-month-old boy with sagittal craniosynostosis who underwent expansion of the posterior skull with cranioplasty. Quantification of the local changes between pre- and postoperative images was quantified by mapping the minimum distance of individual points from the preoperative to the postoperative surface meshes, and indirect intracranial volume changes were estimated. The proposed methodology can provide the surgeon a tool for the quantitative evaluation of surgical procedures and detection of abnormalities of the infant skull and its development.